

SURGICAL NEUROLOGY INTERNATIONAL

SNI: Spine

OPEN ACCESS

For entire Editorial Board visit : http://www.surgicalneurologyint.com

Nancy E. Epstein, MD Winthrop Hospital, Mineola

# Case Report

# Extradural hemangioma mimicking a dumbbell nerve sheath tumor in the thoracolumbar spine: Case report

Sourabh Chachan, H. R. Bin Abd Razak, W. Lim Loo, C. Sheng Tan<sup>1</sup>, S. K. Dinesh

Departments of Orthopaedics, 1Pathology, Changi General Hospital, Singapore

E-mail: \*Sourabh Chachan - drsourabhchachan@gmail.com; H. R. Bin Abd Razak - hamidrazak@gmail.com; W. Lim Loo - looweelim@yahoo.com; C. Sheng Tan - tanchiensheng@gmail.com; S. K. Dinesh - Shreekd@yahoo.com.sg \*Corresponding author

Received: 05 April 17 Accepted: 17 May 17 Published: 10 October 17

#### Abstract

**Background:** Extradural hemangiomas are rare, have varied and challenging clinical presentations, and require special considerations from the management point of view.

**Case Description:** A 70-year-old female presented with back pain that was ultimately attributed to a thoracolumbar extra-dural "dumbbell" hemangioma. Following surgical resection, the patient did well.

**Conclusion:** Extradural hemangiomas may present as spinal extradural soft tissue masses that must be differentiated from dumbbell neurofibroma.

Key Words: Extradural hemangioma, nerve sheath tumor, thoracolumbar spine

# Access this article online Website: www.surgicalneurologyint.com DOI: 10.4103/sni.sni\_120\_17 Quick Response Code:

# **INTRODUCTION**

Hemangiomas are congenital vascular malformations of unknown etiology.<sup>[1,5]</sup> In the spine, vertebral body hemangiomas are some of the most commonly reported lesions.<sup>[5]</sup> Extradural hemangiomas are rare and only infrequently present without osseous involvement.<sup>[2,4,5]</sup> A lumbar extradural "dumbbell" hemangioma requires differentiation from a dumbbell nerve sheath tumor and appropriate excision for optimum clinical outcomes.

# **CASE REPORT**

# Clinical presentation and magnetic resonance/ computed tomography findings

70-year-old Chinese female presented А with deep-seated epigastric pain radiating to the back/ flanks without a focal neurological deficit. The esophagogastroduodenoscopy The was negative. underwent computed (CT)patient tomography scan of the abdomen/pelvis, which documented an enhancing extradural spinal lesion measuring approximately  $2.3 \times 1.5$  cm at the level of the L1 and L2 vertebrae, resulting in severe central canal stenosis [Figure 1]. It extended through the left L1/L2 foramen and into the left paravertebral region, abutting the left psoas muscle. Although there was no bony erosion/destruction, the L1 vertebral body showed posterior scalloping abutting the lesion. A supplemental magnetic resonance imaging (MRI) scan scan confirmed an enhancing "dumbbell shaped"  $4.8 \times 3.9 \times 1.4$  cm (CC  $\times$  TV  $\times$  AP) intraspinal extradural lesion centred at the L1/L2 level [Figure 2]. It was isointense on T1, hyperintense on T2, and

For reprints contact: reprints@medknow.com

How to cite this article: Chachan S, Bin Abd Razak HR, Loo WL, Tan CS, Dinesh SK. Extradural hemangioma mimicking a dumbbell nerve sheath tumor in the thoracolumbar spine: Case report. Surg Neurol Int 2017;8:244. http://surgicalneurologyint.com/Extradural-hemangioma-mimicking-a-dumbbell-nerve-sheath-tumor-in-the-thoracolumbar-spine:-Case-report/

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

#### Surgical Neurology International 2017, 8:244

homogeneously enhanced with contrast. On MRI, it resulted in severe L1/L2 spinal stenosis, compressing the conus/filum terminale, and extending into the left L1/L2 neural foramen. Based on the CT/MR images, the differential diagnoses included schwannoma, neurofibroma, lymphoma, and metastasis.

#### Surgery

The patient underwent T12–L3 laminectomy with L1–L2 left facetectomy for excision of the tumor accompanied by T12–L3 instrumented fusion [Figure 3]. Intraoperatively, a completely extradural highly vascular soft-tissue lesion was found at the L1–L3 vertebral levels. Intraoperative frozen sections showed fibroadipose tissue with numerous vascular channels closely associated with arterioles and venules. The findings were suggestive of a vascular malformation. The patient recovered well postoperatively.

# Histology

Histological examination showed fibroadipose tissue with diffuse proliferation of densely packed vascular channels



Figure 1:CT scan ofThoraco-lumbar spine showing space occupying lesion on spinal canal (Pre-op)

closely associated with some arterioles and venules without any thrombosis [Figure 4]. Immunohistochemical staining found the endothelial cells to be CD31 immune-reactive [Figure 5]. The rare lymphatics channels were immune-reactive to D2-40 stain. However, the stains for Melan-A and HMB-45 were negative.

#### **Postoperative course**

Four months after the surgery, the patient remained neurologically intact. MRI repeated 3 months postoperatively showed complete resection of tumor and no cord compression [Figure 6].

## DISCUSSION

Extradural hemangiomas are rare, and are characteristically slowly progressive lesions that rarely present with acute neurological deterioration.<sup>[3,5]</sup> CT scan and MRI studies identify extradural hemangiomas as hyperdense on CT, isointense on T1, hyperintense on T2 weighted MR images, and homogeneous enhancement with contrast.<sup>[3]</sup> They are typically round or ovoid in shape, tend to extend through intervertebral foramina, and are usually located in the ventral extradural space of the lumbar spine.<sup>[3]</sup> Histologically, they are soft-tissue vascular malformations (e.g., abnormal arteries and veins)



Figure 2: Contrast enhanced MRI images of thoraco-lumbar spine showing dumbbell shaped tumor in spinal canal



Figure 3: Post-op xray of thoraco-lumbar spine after decompression and posterior stabilisation



Figure 4: Histopathological slide showing vascular lesion composed of capillaries, arterioles and venules with intercepting adipocytes



Figure 5: Immunostaining slide showing CD31 stained endothelial cells within the vessels

that frequently demonstrate degenerative changes due to repeated thrombosis and fibrosis.<sup>[5]</sup>

The most common differential diagnoses include schwannoma, lymphoma, meningioma, angiolipoma, disk herniation, synovial cysts, granulomatous infection, pure epidural hematoma, and extramedullary haematopoiesis.<sup>[2-5]</sup> Complete surgical resection of hemangioma may be complicated by copious intraoperative hemorrhage and the possibility of incomplete tumor resection.<sup>[2-5]</sup> Re-operation for residual/recurrent tumors is associated with higher complication rates and poorer outcomes.<sup>[3,4]</sup> This case highlights unique problems with the diagnosis and management of spinal hemangiomas and special

http://www.surgicalneurologyint.com/content/8/1/244



Figure 6: MRI images at post-op 3 months showing complete resection of tumor without any signs of recurrence

considerations to be kept in mind while dealing with these rare lesions.

## **Financial support and sponsorship** Nil.

#### **Conflicts of interest**

There are no conflicts of interest.

# REFERENCES

- Aggouri, M, Berete I, Himmich M, Chakour K, Chaoui MF. Extradural Hemangioma of Thoracic Spine. Open J Mod Neurosurg 2014;4:190-2.
- Badinand B, Morel C, Kopp N, Tran Min VA, Cotton F. Dumbbell-shaped epidural capillary hemangioma. AJNR Am J Neuroradiol 2003;24:190-2.
- Lee JW, Choo EY, Hong SH, Chung HW, Kim JH, Chang KH, et al. Spinal Epidural Hemangiomas: Various Types of MR Imaging Features with Histopathologic Correlation. AJNR Am J Neuroradiol 2007;28:1242-8.
- Minh NH. Cervicothoracic spinal epidural cavernous hemangioma: Case report and review of the literature. Surg Neurol 2005;64:83-5.
- Weiss SW, Goldblum JR. Benign tumors and tumor-like lesions of blood vessels. In: Weiss's Soft Tissue Tumors. 4th ed. St Louis, Mosby; 2001. p. 837-90.