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Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) continues to be a 
devastating neurological condition with a high risk of associated morbidity and 
mortality. Inflammation has been shown to increase the risk of complications 
associated with aSAH such as vasospasm and brain injury in animal models and 
humans. The goal of this review is to discuss the inflammatory mechanisms of 
aneurysm formation, rupture and vasospasm and explore the role of sex hormones 
in the inflammatory response to aSAH.
Methods: A  literature review was performed using PubMed using the 
following search terms: “intracranial aneurysm,” “cerebral aneurysm,” 
“dihydroepiandrosterone sulfate” “estrogen,” “hormone replacement therapy,” 
“inflammation,” “oral contraceptive,” “progesterone,” “sex steroids,” “sex hormones” 
“subarachnoid hemorrhage,” “testosterone.” Only studies published in English 
language were included in the review.
Results: Studies have shown that administration of sex hormones such as 
progesterone and estrogen at early stages in the inflammatory cascade can lower 
the risk and magnitude of subsequent complications. The exact mechanism by 
which these hormones act on the brain, as well as their role in the inflammatory 
cascade is not fully understood. Moreover, conflicting results have been published 
on the effect of hormone replacement therapy in humans. This review will 
scrutinize the variations in these studies to provide a more detailed understanding 
of sex hormones as potential therapeutic agents for intracranial aneurysms and 
aSAH.
Conclusion: Inflammation may play a role in the pathogenesis of intracranial 
aneurysm formation and subarachnoid hemorrhage, and administration of sex 
hormones as anti‑inflammatory agents has been associated with improved 
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INTRODUCTION

Patients surviving an aneurysmal subarachnoid 
hemorrhage  (aSAH) often develop cerebral vasospasm 
and delayed ischemic neurological injury.[79] 
Approximately two‑thirds of patients with aSAH develop 
angiographic vasospasm 3–14  days after rupture of an 
aneurysm.[79] Following aSAH, inflammatory cells enter 
the central nervous system  (CNS) leading to a decrease 
in cerebral blood flow (CBF) and endothelial cell 
death.[79,89] Inflammation, increase in endothelin‑1(ET‑1), 
and depletion of nitric oxide  (NO) from endothelial 
dysfunction are associated with the onset of 
vasospasm.[19,89] Sex differences in the inflammatory and 
apoptotic response to brain injury induced by SAH have 
been shown to exist in experimental models,[42] and sex 
hormones such as estrogen and progesterone have been 
shown to have beneficial effects on inflammation and 
edema after SAH.[128,141,146] Treatment with estrogen 
has been shown to decrease ET‑1 and increase NO.[75] 
Mortality has also been shown to be significantly reduced 
in progesterone treated SAH animals.[141] Even though 
the incidence of SAH is generally found to be higher 
in females, there have been conflicting results on the 
different gender outcomes associated with aSAH.[6,133] 
The purpose of this review is to explore the relationship 
between inflammation and vasospasm in the setting of 
aSAH, as well as the potential benefits of sex hormones 
as a therapeutic anti‑inflammatory intervention.

Role of inflammation in intracranial aneurysms 
and subarachnoid hemorrhage
Evidence of inflammation in aneurysm formation and rupture
Factors leading to abnormal vascular remodeling and 
weakening of the vessel wall are not well understood, but 
chronic inflammation and infiltration of inflammatory 
cells has been shown to be an early histologic hallmark 
for aneurysms.[26] The number of macrophages 
within the aneurysmal wall increases as intracranial 
aneurysms  (IAs) develop, while macrophage‑depleted 
mice have much lower rates of IA formation compared 
to controls.[66] Widespread macrophage infiltration with 
accelerated extracellular matrix degradation was also 
shown to correlate with increased rates of aneurysmal 
rupture.[3,66] T‑cells, mast cells, and humoral response 
were also shown to be involved in the formation of 
IAs.[67,132] Chemokines and cell adhesion molecules such 
as monocyte chemotactic protein‑1 (MCP‑1) and vascular 
cell adhesion molecule‑1  (VCAM‑1) play a role in the 

recruitment of monocytes/macrophages to early sites of 
aneurysm formation and arterial wall degeneration.[2,121] 
Along with inflammatory cell infiltration, endothelial 
dysfunction and induction of proinflammatory cascades 
such as activation of NF‑kB, increased expression of 
IL‑1B, and elevated TNF‑alpha have been suggested 
to play a role in IA development.[4,26] Increased levels 
of cyclooxygenase within the walls of ruptured and 
unruptured aneurysms, as well as a reduction in 
rate of rupture with aspirin administration was also 
demonstrated.[51‑53] In animal studies, loss of mural 
cells, increased neutrophil accumulation in intraluminal 
thrombus, adventitial fibrosis, and inflammation were 
some of the characteristics of progressing and ruptured 
IAs in rats.[82] In human IA samples, epithelial denudation 
of the aneurysm wall, apoptosis of mural cells, luminal 
thrombosis, T‑cell, and macrophage infiltration were 
associated with rupture.[44]

Evidence of inflammatory markers in the 
systemic circulation and cerebrospinal fluid after 
subarachnoid hemorrhage
Inflammatory markers increase in the systemic circulation 
as well as in cerebrospinal fluid  (CSF) following SAH 
and are predictive of poor outcomes.[57,68,71,90] This has led 
to increased interest in the development of biomarkers 
to predict outcomes after aSAH  [Table  1]. High body 
temperature and leukocytosis have also been correlated 
with worse outcomes after aSAH, though no causal 
relationship was established between intracerebral 
and peripheral inflammation.[32,126,130] C‑reactive 
protein  (CRP) was shown to be increased in several 
studies, peaking at 73–96 hours, and correlated with 
worse EBI.[43,76,157] In another study, high‑sensitivity 
CRP  (hs‑CRP), which is a more precise measure of 
CRP, was found to be significantly associated with poor 
outcomes determined by Glasgow Outcome Scale at 
3  months.[126] Zhong et  al. showed that higher levels of 
IL‑6 and IL‑10  24 hours after admission is associated 
with severe EBI, and increased the susceptibility to 
infections such as pneumonia.[157] The rate of change 
of IL‑6 and erythrocyte sedimentation rate  (ESR) 
levels were also associated with DCI.[87] Red blood cell 
distribution width  (RDW), an emerging inflammatory 
marker, was also found to be significantly higher in 
SAH patients and associated with poor outcome.[25] 
Asymmetric dimethyl arginine  (ADMA), an endogenous 
inhibitor of nitric oxide synthase and a marker of 
endothelial dysfunction and inflammation, was also 

functional outcome in experimental models. Further studies are needed to determine 
the therapeutic role of these hormones in the intracranial aneurysms and aSAH.
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shown be increased starting from day 2 and was highest 
approximately 9–10  days after SAH.[76,114] Higher levels 
of macrophage migration inhibitory factor  (MIF), 
soluble CD40 ligand  (sCD40L), and platelet‑derived 
growth factor  (PDGF)‑BB were also correlated with 
poor outcome.[23,70] aSAH patients may also experience 
cardiopulmonary complications as part of the systemic 
reaction.[142] Pulmonary edema that occurs after SAH 
was associated with cardiac failure in the early phase 
and inflammatory response in the delayed phase.[99] It 
is worth noting that thromboelastography maximum 
amplitude  (MA), a marker of platelet activation, was 
shown to be higher in patients with severe EBI and 
DCI,[43] and the association between MA and clinical 
outcome was reported to be stronger than that between 
traditional biomarkers.[111]

Several studies have investigated various inflammatory 
mediators in cerebrospinal fluid  (CSF) following 
aSAH, with some conflicting reports.[68,69] Many 
studies point to the prominent role of tumor necrosis 
factor‑alpha  (TNF‑α), though other studies have found 
increased levels of interleukin  (IL)‑6 and IL‑8 but not 
TNF‑α.[36,69,147] One recent study found detectable levels 
of TNF‑α in 30% of patients after SAH, suggesting 
that the amount and type of inflammation may vary 
considerably in different patients.[56] In animal models 
of SAH, blockage of TNF‑α has been shown to reduce 
apoptosis in the hippocampus after SAH.[64] Another 
inflammatory marker found throughout many studies is 
endothelin‑1  (ET‑1), and monocytes isolated from CSF 
of these patients are capable of producing ET‑1.[37,83] 
As with several other pro‑inflammatory molecules, the 

Table 1: Several inflammatory biomarkers that are found to be increased in the serum and cerebrospinal fluid of SAH 
patients

Marker Location Timing Function

White blood cell (WBC) count Serum and 
cerebrospinal 
fluid (CSF)

‑Days 1, 4, 7, 10, and 14 after 
SAH in serum[20]

‑Within 14 days in CSF[123] 

‑Correlated with delayed cerebral ischemia (DCI) 
occurrence.[20]

‑WBC count remain elevated for 14 days in SAH patients. 
No difference was found in the CSF cell counts in patients 
with DCI vs those without.[123]

C‑reactive protein (CRP) Serum and CSF ‑Days 1, 3, 5, 7, 9, 11, and 13 
in serum[60]

‑Days 0, 1, 2, 3, 5, 7 in CSF[40]

‑Significant differences were found between patients that 
developed vasospasm vs those that did not on days 1, 3 
and 5.[60]

‑Peak value was observed on day 3 in both serum and CSF 
levels. Higher CRP levels correlated with vasospasm and 
poor outcome.[40]

High‑sensitivity c‑reactive 
protein (hs‑CRP)

Serum Not available[126] Significant association was found between high hs‑CRP 
levels and poor Glasgow Outcome Scale score.[126]

Erythrocyte sedimentation 
rate (ESR)

Serum Up to 15 days[87] Time‑independent association between ESR and DCI was 
found.[87]

Interleukin‑1beta receptor 
antagonist

Serum and CSF ‑First two weeks in both 
serum and CSF[47]

Development of systemic inflammatory response syndrome 
post‑SAH and organ failure were correlated with significant 
increase in serum only.[47]

IL‑6 Serum and CSF ‑Up to 15 days in serum[87]

‑In less than 48 hours in 
serum[117]

‑daily in CSF[72]

‑Rate of change in IL‑6 was associated with DCI.[87]

‑IL‑6 was elevated in patients with global cerebral 
edema, SAH early brain edema score ≥3 and Hunt and 
Hess ≥4.[117]

‑IL‑6 in CSF was increased in patients with vasospasm. 
Levels between 530 and 3100 pg/mL were associated with 
increased likelihood of vasospasm.[72]

IL‑8 Serum and CSF ‑Serially over 14 days in both 
serum and CSF[102] 

Patients experiencing vasospasm had significantly higher
CSF levels of IL‑8 on days 5 and 7.[102]

Tumor necrosis factor‑α
(TNF‑α)

Serum and CSF ‑Up to 2 weeks in serum[24]

‑Up to 12 days in serum[8]

‑Day 2 in CSF and 
meta‑analysis[145]

Elevated TNF‑α on days 2 and 3 and global elevation were 
correlated with poor outcome but not vasospasm.[24]

‑No association was found between TNF‑α and DCI.[8]

‑Serum levels of TNF‑α were increased in relation with 
vasospasm and correlated with Hunt and Hess grade.[145]
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expression of ET‑1 is highly variable. In one study, mRNA 
expression of ET‑1 levels were found to be present in 
46% of the patients with SAH 5  days after the start of 
symptoms versus none detectable in the CSF of control 
participants.[37] A study from a different group, however, 
failed to detect ET‑1 after SAH at various time points 
using radioimmunoassay for big endothelin.[49] The 
variation found in these inflammatory markers reflects 
the heterogeneity of complications associated with 
aSAH.[27,124] The conflicting findings in these studies may 
stem from the time CSF levels of these markers were 
measured and the diagnostic method used following SAH 
or the difference in inflammatory response experienced 
by each participant.

Evidence for inflammation as a cause of vasospasm 
after subarachnoid hemorrhage
Several clinical studies have attempted to correlate 
fever and inflammation in the absence of infection 
with vasospasm.[81,86,96,98,100,104,115,125,139,144] Pro‑inflammatory 
agents, such as lipopolysaccharide  (LPS),[113] have been 
administered using the intracisternal route to show that 
vasospasm can occur in the absence of blood. This has 
demonstrated that the presence of red blood cells (RBCs) 
or hemoglobin (Hgb) are not necessary for the induction 
of vasospasm. Among the cellular adhesion molecules, 
E‑selectin has also been shown to correlate well with the 
patients’ response to SAH.[107] E‑selectin was found to be 
in higher concentrations in the CSF of SAH patients who 
develop moderate or severe vasospasm.[107] In addition, 
inhibition of E‑selectin with an inhibitory antibody was 
shown to decrease vasospasm in rodent models.[74] Other 
adhesion molecules have been implicated as well. In 
one study Mac‑1 monoclonal antibodies and anti‑LFA‑1 
antibodies were administered systemically, and were 
shown to reduce vasospasm in rat,[29] rabbit,[109] and 
primate[28] SAH models. Similar results have been shown 
with anti‑ICAM1 monoclonal antibodies in a rodent 
model.[101] Among other pro‑inflammatory cytokines, 
TNF‑α levels in patients with lower grade  SAH were 
shown to correlate with severity of vasospasm.[50] This has 
been further studied as TNF‑α inhibitors were shown to 
attenuate vasospasm in animal models.[15] The levels of 
other inflammatory cytokines such as IL‑1B, IL‑6, IL‑8, 
and MCP‑1 were also shown be increased in the artery 
wall, serum, and CSF correlating with vasospasm and 
severity of SAH.[1,36,45,54,78,93,95,97,140] Signaling pathways have 
been examined as well in the induction of vasospasm, 
namely, mitogen‑activated protein‑kinase  (MAPK) and 
nuclear factor kappa‑B  (NF‑ĸB).[5] Other studies have 
suggested that oxidative stress[58] and complement 
pathway activation[153] could play an important role in the 
induction of vasospasm as well.

Recent studies have been done to explore a possible 
genetic predisposition to vasospasm. One promising 
avenue has been the study of haptoglobin proteins, which 

are responsible for removal of free hemoglobin from CSF 
that may be the cause of inflammation. Haptoglobin (Hp) 
has three known distinct phenotypes in humans – Hp1‑1, 
Hp2‑1, and Hp2‑2.[14] In humans, the haptoglobin proteins 
with α‑2 subunits are associated with higher rates of 
vasospasm compared to other haptoglobin types(α1‑α1).[13] 
This is consistent with animal models that demonstrate 
more severe vasospasm and worst outcome after SAH in 
genetically altered Hp2‑2 rodents.[18]

Changes in NO have also been extensively studied in 
the induction of vasospasm. Increase in the levels of 
endothelial nitric oxide synthase  (eNOS) and inducible 
nitric oxide synthase[113] were detected in mice after SAH, 
and this physiological response to SAH is decreased in 
pro‑inflammatory Hp2‑2 transgenic mice compared with 
Hp1‑1 mice.[108,116] This further supports the evidence that 
Hp2‑2 genotypes are associated with a worse outcome in 
SAH, as these participants would have less NO, which is 
involved in signaling pathways that lead to vasodilation 
and cytoprotection.[144] Studies have also suggested that 
an alteration dubbed “eNOS uncoupling”[150] may lead 
to production of superoxides instead of NO following 
SAH.[116]

ET‑1, a potent vasoconstrictor, is thought to play a role 
in the inflammatory response after SAH.[65,84,120] Increase 
in ET‑1 levels in patients with SAH and symptomatic 
vasospasm has been documented in several studies, 
and the amount of blood found within the cisterns 
correlated well with the level of ET‑1 in CSF.[65,84,120] 
However, other studies found no significant elevation of 
ET‑1 after SAH, and similarly, no correlation between 
ET‑1 levels and vasospasm.[49,65] Similarly, administration 
of anti‑ET‑1 monoclonal antibodies was effective in 
decreasing vasospasm in some studies.[30,148,158] A rodent 
study suggested that transgenic mice overexpressing 
ET‑1 experienced more severe vasospasm and edema.[151] 
Some studies have attempted the use of clazosentan, a 
synthetic endothelin receptor antagonist  (ETRA), to 
reduce vasospasm in rodent SAH models, however, the 
overall morbidity from vasospasm was unchanged.[22]

Several studies have shown a relationship 
between glutamate, as well as a synthetic analog 
N‑methyl‑D‑aspartate  (NMDA), and vasodilation under 
physiological conditions.[17,39] These effects appear to result 
from neuronal NMDA receptor activation subsequent 
neuronal depolarization, and production of neuronal 
NO, which diffuse to cerebral arterioles and arteries 
leading to vasodilation.[17,39] Glutamate receptors were 
not shown on human and rat microvascular endothelial 
cells, further suggesting that the effect of glutamate on 
vasodilation is indirect through diffusion of substances 
from cells surrounding the cerebral vessels.[92] On the 
other hand, synaptic glutamate receptor 1  (GluR1) has 
been shown to be reduced in mice 24 hours after SAH 
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which also corresponds to peak vasoconstriction in 
mice.[135] Bell et  al.[9] have demonstrated reduction in 
surface glutamate receptor 2 (GluR2) in rats 7 days after 
SAH in areas proximal to microthombosis and thrombin 
activated platelets. Such reduction in glutamate receptors 
possibly contributes to vasoconstriction after SAH. A 
study utilizing S‑4‑carboxyphenylglycine  (S‑4‑CPG), 
a glutamate receptor antagonist, inhibited vasospasm 
in haptoglobin 2‑2 mice after SAH induction.[46] 
Similarly, combination therapy with a GluN1/GluN2B 
NMDA receptor and metabotropic glutamate receptor 
1 negative allosteric modulator was neuroprotective by 
attenuating apoptosis and improving functional outcome 
after SAH.[154] Neutrophil depletion, which has been  
associated with reversal of vasospasm, caused a shift 
in the NMDA receptor subunit composition toward 
a memory sparing phenotype, and enhanced memory 
after experimental SAH.[110] These findings illustrate the 
complex relationship between glutamate and NMDA 
receptors and SAH‑induced vasospasm. The mechanisms 
mediating these interactions need to be further explored 
and scrutinized to clarify the contribution of these 
receptors to the pathophysiology of SAH‑induced 
inflammation and brain injury.

The impact of sex hormones on intracranial 
aneurysms and subarachnoid hemorrhage
Estrogen
Estrogen is the primary female sex hormone responsible 
for the development and regulation of the female 
reproductive system, although it has been found to 
play a role in male physiology as well.[91] Estrogen 
receptor‑alpha  (ER‑α) and estrogen receptor‑beta  (ER‑β) 
genes encode estrogen receptors  (ER) inside the nuclear 
membrane. Estrogen alters glutamatergic and GABAergic 
neuronal activity in many steroid‑sensitive brain 
regions[59] and may stimulate mitogen‑activated protein 
kinase  (MAPK) signal transductive pathways to protect 
cells in a manner similar to as growth factors.[122]

Estrogen is thought to play a role in aneurysm formation. 
Females have been shown to develop intracranial 
aneurysms at higher rates than males and, experimental 
animal studies support the hypothesis that induced 
estrogen deficiency via bilateral oophorectomy in rats 
causes an increase in the frequency of aneurysm formation 
and augment the aneurysm size.[62] Moreover, reversal of 
this induced deficiency with continuous‑release pellets 
of 17‑β estradiol reduces the frequency of aneurysm 
formation.[63] These effects are attributed to estrogen’s 
protective role on endothelial cell growth and function.[63] 
ERβ agonist were also shown to reduce the frequency of 
aneurysm formation in wild type ovariectomized mice 
but not in ovariectomized ERβ knockout mice suggesting 
that ERβ receptors found on aneurysm walls are involved 
in the protective effects of estrogen.[129] Whether estrogen 

may be used as a pharmacological agent to reduce the 
chronic inflammation and loss of mural cells in the 
aneurysm wall must be elucidated in future studies.

Evidence obtained from animal studies suggests that 
continuous estrogen treatment in SAH‑induced rats may 
decrease the rate and severity of vasospasm by inhibiting 
endothelin‑1 production, increasing iNOS expression, and 
preserving eNOS expression.[75] Mechanistically, estrogen’s 
attenuation of cerebral vasospasm may be related to its 
potent vasodilatory action.[33] Estrogen has also been shown 
to be a potent neuroprotective agent in ischemic stroke,[59] 
particularly in premenopausal women.[59] In the CNS, 
estrogen is known to reduce lipid peroxidation,[7,112] protect 
against oxidative stress,[16] decrease the production of 
reactive oxygen species,[31] and interrupt the accumulation 
of intracellular peroxide in an ER‑dependent manner.[136] 
Moreover, a growing number of studies demonstrate that 
exogenous estradiol reduces tissue damage resulting 
from experimental ischemic stroke in both sexes. Female 
reproductive steroids also may ameliorate ischemic 
injury through promotion of γ‑aminobutyric acid 
type  A  (GABA  (A)) receptor‑mediated mechanisms, as 
well as through suppression of excitatory amino acid 
toxicity.[59] Estrogen inhibits inflammatory signaling through 
the inhibition of NF‑ĸB, an important pro‑inflammatory 
pathway activated after SAH.[146] In addition, tamoxifen, 
a selective estrogen receptor modulator, was found to 
modulate TLR4/NF‑ĸB signaling pathways and improve the 
cognitive and behavioral outcome of SAH rats.[128]

Progesterone
Progesterone  (PROG) is another sex steroid naturally 
synthesized by neurons and oligodendrocytes in the 
CNS. In addition to its hypothalamic receptors involved 
in the regulation of female reproductive physiology, 
PROG receptors are constitutively expressed in other 
parts of the brain including the cerebral cortex, 
hippocampus, basal ganglia, and cerebellum.[119] The 
classical progesterone receptor‑mediated genomic 
actions of progesterone occur via activation of nuclear 
progesterone receptor‑A  (PR‑A) and PR‑B.[41,131,152] The 
nonclassical signaling of progesterone is mediated 
by membrane progesterone receptors such as mPRα, 
mPRβ, mPRγ, mPRδ, and mPRϵ.[41,131,152] On the other 
hand, allopregnanolone, the metabolite of progesterone, 
mediates its effects as a potent positive allosteric 
modulator of GABA  (A) receptors in the CNS.[119] 
PROG and its metabolite allopregnanolone were shown 
to have strong anti‑inflammatory, anti‑apoptotic and 
neuroprotective properties in various neurological 
injury models including traumatic brain injury  (TBI) 
ischemic stroke, neonatal hypoxic brain injury, diabetic 
neuropathy, and demyelinating disorders.[34,73,105,118,137,143] 
A water soluble progesterone analogue, which would 
facilitate its delivery in emergency conditions, has been 
recently developed.[138]
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Progesterone may play a critical role in altering the 
pathogenesis of SAH, and has already been proven to be 
beneficial in few studies of experimental SAH.[152] Chang 
et  al.[21] have shown that rats treated with progesterone 
one hour after SAH induction show reduced vasospasm 
and greater levels of eNOS compared to controls. 
Progesterone‑mediated increase in eNOS is thought to 
be related to the Akt signaling pathway, which has also 
been implicated in estrogen‑mediated vasodilation. 
Progesterone stabilizes the blood–brain barrier  (BBB)
[149] and significantly reduces the mortality associated 
with SAH in experimental animals.[141] Progesterone 
treatment was shown to increase appetite scores of 
SAH rats, decrease proinflammatory cytokines such 
as IL‑1b, TNF‑a, and IL‑6 in the intestines, and 
improve the gut structure.[155,156] Our group has shown 
that progesterone prevented basilar artery vasospasm, 
reduced iba‑1 expression in the cortex and cerebellum, 
and restored functional synapses in the hippocampus 
in mice after SAH.[135] Progesterone has also improved 
motor performance on rotarod and grip strength testing 
6 and 9  days after SAH, respectively.[135] Future studies 
are necessary to clarify the role of progesterone as a 
pharmacological agent to reduce chronic inflammation 
in intracranial aneurysms and to reduce vasospasm and 
inflammation‑induced brain injury seen after SAH.

Testosterone and dihydroepiandosterone sulfate
Testosterone, another gonadal sex steroid, also plays 
important roles in the CNS, but its direct role in SAH 
is still unclear.[11] Testosterone is physiologically secreted 
by the testes and adrenal glands and transported by 
the sex hormones binding globulins  (SHBG) and 
albumins.[11,61] It acts through activation of androgen 
receptors  (AR)[11] found in multiple neurons throughout 
the brain.[10] Testosterone may also play a neuroprotective 
and anti‑inflammatory role in the CNS.[85,106] In the 
setting of SAH, testosterone was shown to inhibit 
vasospasm in SAH rabbits; however, the exact mechanism 
is unclear.[48] Future studies are needed to investigate the 
role of testosterone in aneurysm formation and SAH.

Dihydroepiandrosterone sulfate  (DHEAS) is another 
sex steroid recently associated with favorable outcomes 
in human SAH.[55] Higher serum levels of DHEAS were 
correlated with favorable neurological outcomes after 
SAH. In the same cohort, favorable outcomes were also 
associated with lower levels of IL‑6,[55] although DHEAS 
levels were only studied in peripheral circulation.[94]

Oral contraceptives and hormone replacement 
therapy
Several population‑based studies have failed to show a 
strong association between risk of SAH and the use of 
oral contraceptives.[12,38,88] The results on the influence 
of hormonal replacement therapy (HRT) on incidence 
of SAH, on the other hand, are conflicting. Several 

studies have shown that HRT reduces the risk of SAH 
in postmenopausal women with odds ratios ranging from 
0.6  (0.4–0.8) to 0.47  (0.26–0.86) with the greatest risk 
reduction in women with a history of smoking.[38,77,88] On 
the contrary, other studies showed no influence of HRT 
on the incidence of SAH in women.[35,103]

Translation from bench to bedside and remaining 
challenges with clinical trials
Though there is promising data alluding to sex hormones 
as potential therapeutic agents for vasospasm and 
neuroprotection in aSAH patients, the gap between animal 
studies and human trials is still large. Concern surrounding 
the failure of clinical trials evaluating progesterone in 
TBI in humans despite extensive supporting data in 
animal models calls for more precise outcome measures 
and alternative clinical trial methodologies.[80] Potential 
challenges for failure of randomized clinical trials in 
SAH are thought to include functional ineffectiveness of 
the tested therapies, timing and dose of the treatment, 
inadequate sample size, insensitive or inappropriate 
outcome measures, the confounding effect of rescue 
therapies in placebo groups, treatment‑associated 
side effects, and variations in practice across different 
centers.[80] The lessons learned from the failed phase III 
randomized clinical trial of progesterone for the treatment 
of TBI is that careful evaluation of dosage needed to treat 
the patients is critical and that outcome measures need 
to be further improved to detect the efficacy of future 
therapeutic agents.[127] Extensive neurobehavioral testing 
is also needed to ensure the functional effectiveness of 
a therapeutic agent before proceeding to a randomized 
clinical trial.[134]

CONCLUSION

Inflammation in the CNS is a major contributing 
force behind vasospasm and early brain injury in aSAH 
patients. Though this link has been made in many 
animal experiments, human trials with anti‑inflammatory 
agents have not been successful in reducing morbidity 
and mortality and improving functional outcome. 
Evaluation of sex hormones as potential therapeutic 
agents to stabilize intracranial aneurysms and improve 
functional outcome in aSAH patients is promising as 
many preliminary animal studies indicate the safety 
and effectiveness of the sex steroids to cross the BBB. 
Future studies are warranted to determine the role of sex 
hormones in treatment of these conditions.
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