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INTRODUCTION

The cell and carcinogenic transformation

e cells in a multicellular organism possess a massive number of systems to ensure not only 
the survival of individual cells but also the organism as a whole [Figure 1]. is requires a very 
complex number of cellular mechanisms at several levels, from the cellular membrane enclosing 
the cell to the various compartments and membranes within the cell. Hundreds of complex cell-
signaling operations occur constantly within the cell in a series of process that entail nuclear 
DNA instructions as well as membrane information transfer to the cytosol. Various cell signals 
utilize a number of similar cell-signaling pathways in a finely tuned and highly coordinated way. 

ABSTRACT
An infectious etiology for a number of cancers has been entertained for over 100 years and modern 
studies have confirmed that a number of viruses are linked to cancer induction. While a large number of 
viruses have been demonstrated in a number of types of cancers, most such findings have been dismissed 
in the past as opportunistic infections, especially with persistent viruses with high rates of infectivity of 
the world’s populations. More recent studies have clearly shown that while not definitely causing these 
cancers, these viruses appear capable of affecting the biology of these tumors in such a way as to make 
them more aggressive and more resistant to conventional treatments. The term oncomodulatory viruses 
has been used to describe this phenomenon. A number of recent studies have shown a growing number 
of ways these oncomodulatory viruses can alter the pathology of these tumors by affecting cell-signaling, 
cell metabolism, apoptosis mechanisms, cell-cell communication, inflammation, antitumor immunity 
suppression, and angiogenesis. We are also learning that much of the behavior of tumors depends on cancer 
stem cells and stromal cells within the tumor microenvironment, which participate in extensive, dynamic 
crosstalk known to affect tumor behavior. Cancer stem cells have been found to be particularly susceptible 
to infection by human cytomegalovirus. In a number of studies, it has been shown that while only a select 
number of cells are actually infected with the virus, numerous viral proteins are released into cancer and 
stromal cells  in  the  microenvironment and these viral proteins are known to affect tumor behavior and 
aggressiveness.
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e metabolism of the cell entails a coordinated system of 
nutrient breakdowns, biosynthesis of essential molecules, 
and selection of metabolites to be utilized on an ongoing 
basis.

Cells also need protection from the toxic substances in its 
environment and need to maintain their physical structure, 
metabolic functions, and other maintenance requirements 
as the microenvironment changes. During development, 
and even adult maintenance, a progenitor cell may adapt to 
become a skin cell, a neuron, or a bone cell or an inflammatory 
cell from its library of contained cell instructions.

e nucleus of the cell contains its inherited library of genetic 
information in its DNA template. is information is stored 
in the DNA in its coding and noncoding sections and in the 
histones around which the DNA is wrapped. Specialized 
proteins are constructed in the nucleus on membranes in 
the large nuclear organelle, the nucleolus. ese proteins are 
constructed as directed by the information contained in the 
nuclear library. e biochemical reactions needed for the 
cell to survive are selected from information in a molecular 
form that comes from the cellular microenvironment. All 
of these processes require energy sources derived from 
molecular reactions primarily located in mitochondrial DNA 
and supplied by nutrients or even in extreme circumstances 
from its own molecules to survive and to function. e 
nuclear membrane has channels to communicate with the 

cytosol. at is the nuclear membrane specifically allows 
the transport of selected molecules in and of the nucleus, 
especially the mRNA or message templates from the nuclear 
DNA that direct the cell’s various functions in the cytoplasm 
as well as receiving instructional transcription molecules 
from sites within the cytosol. e DNA itself is dynamically 
influenced by epigenetic signals (developmental factors 
in utero and during childhood, environmental chemicals, 
drugs, pharmaceuticals, aging, diet, and other environmental 
influences.) that can rapidly alter the instructions being given 
the cell [Figure 2].

e cytoplasm, or cytosol, contains water, amino acids, and 
organelles for the construction of proteins, which come 
from information derived from the nucleus. ese proteins 
are made on short templates that come from the nucleus 
as mRNA protein molecules and attach to cytoplasmic 
membranes on the ribosomes located on the Golgi apparatus. 
In the cytosol, glucose, and other energy molecules are 
broken down or catabolized to supply energy to operate these 
and other metabolic processes.

e mitochondria, which contain their own genetic 
information, provide a major source of energy from 
metabolites, like pyruvate, which is formed during the 
process of glycolysis in the cytoplasm. Pyruvate and other 
metabolites enter the mitochondrion and are broken down 
and enter the mitochondrial tricarboxylic acid (TCA) cycle 

Figure 1: Simplified illustration of a cell, pointing out some of the important mechanisms of viral oncomodulation.
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to produce high yields of energy molecules such as adenosine 
triphosphate (ATP). ese energy molecules drive all the 
energy-demanding biochemical reactions, many membrane 
transporters, and other such functions taking place in the 
cell. Much of the cell’s protection is energy dependent.

Cell-signaling pathways consist of a complex series of 
interacting molecules within the cytoplasm and are activated 
by molecules from various extracellular and membrane 
receptors stimulated and influenced by both extracellular and 
intracellular signals. ese extracellular activating molecules 
drive the cell to respond by affecting cell signaling pathways 
and influencing metabolism. Some signaling pathways are 
designed to trigger cell death (apoptosis) and others can 
stimulate the cells to survive, grow, and proliferate. It has 
been generally held that mutations in the nuclear DNA drive 
the cell to become a cancer cell. However, this long-held 
concept is now being challenged. As a result, a major change 
in our thinking about the origins and treatment of cancer is 
occurring.

Compelling evidence from multiple lines of the study 
suggests that most cancers are either the result of chronic 
inflammation or made more aggressive and deadlier as a 
result of prolonged and/or intense inflammation.[7,15,52,161] 
e process of cancer induction can include general 
inflammation within the body (extrinsic inflammation) 
or localized inflammation (intrinsic) within the tumor 
microenvironment. Likewise, a growing number of 
carcinogenic factors are found to be inflammatory, such as 
chronic irritation, chemical carcinogens, bacterial, fungal, 

and viral infections, parasitic infections, and exposure to 
ionizing radiation. What all these have in common is the 
induction of inflammation.

Is cancer a genetic and/or a metabolic disorder?

Mechanisms linking inflammation with all stages of cancer 
development have been elucidated in a number of recent 
studies.[177] e search for a common cause for cancers in 
general has, until recently, been focused on activation of 
cellular DNA oncogenes with subsequent overactivation of 
specific cell-signaling pathways. Seyfried et al. have recently 
shaken the oncology world by suggesting, supported by a 
great deal of evidence, the idea that cancer is not a genetic 
disorder, but rather a metabolic disease.[173-176]

Among his many studies, Seyfried has shown that cells, 
on malignant transformation, rapidly undergo radical 
changes in metabolism that favor both (a) an elevation in 
energy supplies and how this energy is generated and (b) 
rerouting of metabolism for biosynthesis of macromolecules 
needed for cell reproduction. To accomplish these changes 
requires major metabolic shifts commandeering cystolic and 
mitochondrial processes linked to metabolism, principally 
by switching metabolism to (i) favor glycolysis that takes 
place not only in the cytoplasm but also in the mitochondria 
and a (ii) redirecting the TCA cycle in the mitochondria for 
biosynthesis of macromolecules, production of nucleotides, 
and supplying substrates for membrane lipids and TCA cycle 
intermediates, in addition to making the general fuel source 
of metabolism, molecular ATP [Figure 3].

Figure 2: Illustration of epigenetic mechanisms, demonstrating the mechanisms by which environmental stimuli can affect DNA function.
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e cancer process is also dependent on suppressing apoptosis 
(programmed cell death), inhibiting tumor suppressor 
mechanisms (p53, p21, and PTEN), and stimulating cell 
growth factors (Bcl-2, platelet-derived growth factors 
[PDGFs], basic fibroblastic growth factor, etc.) from the 
mitochondria [Figure 1].[97,99] Once the cancer transformation 
takes place, a number of mechanisms are activated to ensure 
cancer cell survival.[158] For example, the cancer cells as well 
as surrounding stromal cells in the microenvironment 
generate special immune-suppressing proteins and release 
immune-suppressing exosomes, thus altering immune 
competence (especially anticancer immune surveillance), 
while promoting angiogenesis and inflammation within the 
tumor microenvironment.[15,233] In most human cancers, 
we eventually see massive mutation of genes, rather than 
activation of one or a few critical oncogenes. Most of these 
cancer cell oncogenes have to do with inflammation, immune 
function, angiogenesis, tumor suppression mechanisms, and 
various aspects of essential cancer cell-signaling.[52,112,161]

One of the unanswered questions is  -  How would a cancer 
cell, by random mutations, know which oncogenes were 
essential for its survival, eventual invasion of surrounding 
tissues, massive proliferation of cells, activation of a complex 
process, and finely tuned processes, such as the angiogenesis 
programs, and, in an exacting way, create metabolic 

alterations favorable to its growth and spread? Random 
mutations caused from damage by reactive oxygen and 
nitrogen species, one would think, would activate genes that 
were not only favorable to tumor growth but also equally be 
unfavorable, being that reactive oxygen and nitrogen genetic 
injury would be rather haphazard.

e actual conversion of a precancer cell into a fully 
cancerous cell appears to involve a series of steps that must 
be rather exacting so as to turn on cell survival mechanisms 
and suppress programmed cell death mechanisms. is not 
only entails cell-signaling pathways but also alterations in 
metabolism, which appear to be quite dynamic as cancer 
progresses.

VIRAL CAUSATION OF CANCER: THE 
EVIDENCE GROWS STRONGER

ere are some 1400 human pathogens that include 
220 viruses. It is recognized that a variety of infectious 
agents can contribute to the carcinogenic process.[129,234] 
Cancer cell transformation can occur either by (1) genetic 
insertion of viral oncogenes in the cell’s genome or (2) by 
suppression of protective cell processes. is suppression 
can include blocking of anticancer immunity, activation of 
chronic inflammation, promotion of genetic instability, or 

Figure 3: Cancer Cell Metabolism involving its two major fuels, glucose and glutamine. Demonstrates role of c-MYC in induction of 
glutamine addiction. Myc consist of a family of regulator genes (proto-oncogenes) coding for transcription factors. e Myc family consists of 
c-myc, l-myc and n-myc. Also demonstrates the influence of growth factors on cancer cell-signaling.
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suppression of apoptosis mechanisms, each or all of which 
can promote transformation of the cell into a cancer cell. 
ere is growing evidence that overactivation or increased 
presence of cancer-related cell-signaling pathways alone can 
transform some cells into cancer cells, especially cancer stem 
cells.[76,163]

Of greatest concern regarding cancer are those viruses 
that show persistence following acute infection. e most 
common persistent human pathogens include the herpes 
group of viruses, which include herpes simplex 1 and 2, 
cytomegalovirus, Epstein-Barr virus (EBV), herpesvirus-6, 
and herpesvirus-7. In the past, researchers referred to viruses 
linked to cancer causation as being oncogenic viruses. ese 
viruses become oncogenic by a number of mechanisms, 
including induction of chronic inflammation, insertion 
of specific viral genes into the cell’s genome, inducing 
overexpression of carcinogenic cell signaling pathways, and 
altering cell metabolism.[129]

Until rather recently, viruses were classified as being capable 
of oncogenic transformation by the fact that they inserted 
their oncogenic genetic structure into the cells’ genome.[27,128] 
A newer classification of cancer-related viruses has been 
introduced referred to as oncomodulating viruses, in which, 
rather than actually initiating cancer, the virus plays a 
major role in the pathological behavior of the previously 
transformed cells.[45]

What is oncomodulation?

Oncomodulation involves the production of a number of 
protein viral products in the cell’s cytoplasm that promote 
tumor cell invasion, proliferation, angiogenesis, immune 
suppression, altered expression of cell-signaling pathways, 
inhibition of apoptotic mechanisms, and suppression of 
tumor inhibitors, such as PTEN, pRb, p53, and p21.[47] 
Intensive examination of the cancer process has disclosed a 
great deal of information concerning cancer cell metabolism 
and the exact mechanisms operating tumor cell proliferation, 
migration, tumor cell invasion, and immune suppression, as 
well as cell signaling pathways involved in these processes.

Armed with this information, it becomes obvious that all 
of these processes are fine-tuned to promote survival of the 
cancer cells against the cell’s and body’s defense mechanisms. 
One must ask how could cancer cells know exactly what cell 
mechanisms and cell signaling pathways would be needed 
to accomplish these goals and how to fine-tune them. e 
likelihood of this occurring by a totally random process of 
DNA damage initiated by a storm of reactive oxygen and 
nitrogen products, as stated, seems illogical. Yet, viruses are 
programmed to carry out a very similar series of processes 
within infected cells to ensure not only viral reproduction 
but also prolonged survival in a latent state.

e real debate is now between the idea that cancerous cells 
are merely favorable niches for these viruses or whether 
these viruses can actually induce cancer and then control its 
behavior. Compelling evidence suggests that oncomodulatory 
viruses can control the behavior of transformed cells and 
some evidence strongly suggests that certain viral proteins 
can induce cancerous transformation.[45,129] at is, persistent 
viruses, even in the latent stage, make cancers more aggressive 
by causing them to proliferate faster, become more invasive, 
and metastasize sooner, and more extensively - that is, these 
infected cancer cells become deadly, as well as resistant to 
conventional treatments, such as radiation and chemotherapy.

Rather than discuss a number of persistent viruses linked 
to oncomodulation, I will focus on two of the most likely 
candidates, mostly human cytomegalovirus (HCMV) 
and less so herpes simplex virus type 1 (HSV-1). Other 
oncomodulatory viruses include SV-40, human adenovirus 
and human papillomavirus type 16 and 18.[47] e main 
trigger for activation of oncomodulatory viruses appears to 
be inflammation, especially chronic inflammation.

Viral mechanisms in cancer cell development

Making a link between viral infections and cancer 
transformation of normal cells demands some rather strict 
criteria as well as methodology and technology that was 
not available until relatively recently. In 2002, Cobbs et al. 
reported the presence of HCMV protein and nucleic acids 
in virtually all glioblastomas (GBM) they examined but not 
in normal brain tissue.[49] Others were not able to reproduce 
these results.[109,151,170] In 2011, a symposium was held in 
Washington, D.C. to study the issue and reach a consensus 
utilizing the expertise of oncologists and virologists.[67] e 
difficulty between the supporters of the hypothesis (linking 
viruses and cancer) and its detractors, the group concluded, 
was found to be a lack of uniform operational definition of 
viral positivity within tumor tissue and the use of techniques 
of insufficient sensitivity in the negative studies. In other 
words, in the negative studies, there were no agreed-on 
definitions of viruses affecting cancer cell behavior and the 
techniques of viral detection, and both criteria were found to 
be inadequate at the time. ey also concluded that HCMV 
was definitely involved in significant tumor oncomodulation 
and possible tumor initiation, the latter requiring more 
evidence. It has now been established that 90%–100% of 
GBM, medulloblastomas, prostate adenocarcinomas, breast 
cancers, colon cancers, and mucoepidermoid cancers of 
the salivary glands contain HCMV nucleic acids and viral 
proteins.[11,84,167,184,196,205]

Viruses (HCMV) can induce altered metabolism in stem cells

It was assumed in earlier studies, and some later studies, that 
for the virus to play a role, it must infect most of the tumor 
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cells. Ranganathan et al. found in their frozen specimen 
studies of GBM that most of the tumor cells were not infected 
with the virus, rather only a select number of cells were 
actually infected, with other cells containing viral proteins 
known to affect tumor behavior.[156] e authors suggested 
that the virus may be preferentially infecting cancer stem 
cells. is has been confirmed by Odelberg et al., who found 
that HCMV preferentially infects stem cells.[142] Hence, unlike 
other recognized oncogenic viruses, where all tumor cells 
are infected, in the case of HCMV, one sees viral proteins 
as the inducers of tumor aggressiveness and invasiveness, 
since actual insertion of the viral genome is not necessary for 
oncomodulation [Figure 4 and Table 1].

Mutated HCMV causing induction of cells to become 
tumors

Some have suggested that it is mutated HCMV viruses 
that are responsible for these findings of enhanced tumor 
aggressiveness. Dolan et al., for example, found that mutant 
forms of HCMV grew slowly in tissues, a requirement 
for oncomodulation.[64] ese mutated forms of HCMV, 
which characteristically grow slowly and yield fewer virions 
than wild type viruses, have been found in osteosarcomas, 

glioblastoma, and neuroblastomas.[77,144] It has also been 
shown that latent HCMV viruses can affect tumor cell 
behavior, yet more likely the greatest effect is by mutated 
viruses that reproduce slowly and in low numbers and may 
explain why viral-induced carcinogenesis only affects a small 
percentage of HCMV-infected individuals.[44] In essence, it 
has been demonstrated that persistent viral infections are 
essential for oncomodulation.[44]

e latent virus may be inactive only in so far as viral 
reproduction and not production of the oncomodulatory 
proteins.[80,160] Important is the observation that the mutated 
viruses are not fully latent, rather produce viral offspring 
at a very slow rate, while still generating hundreds of viral 
proteins that can alter tumor cell behavior.[23,134]

Chronic inflammation and HCMV infection

Chronic inflammation is now considered not only a major 
trigger for oncogenic transformation but also drives cancer 
at all stages of development.[122] ere exists a paradoxical 
increase in inflammation in the tumor microenvironment 
and a concomitant decrease in antitumor immunity. 
Inflammatory mediators are critical to cancer initiation, 
progression, proliferation, angiogenesis, invasion, and 

Figure 4: Growth factor involved in cell-signaling pathways.
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metastasis and involve a number of cell-signaling pathways 
and transcription mediators, such as STAT3, NFκB, 
chemokines, cytokines, proinflammatory prostaglandins 
(PGE2), and other inflammatory mediators [Figure 3].[53]

e tumor microenvironment consists of over 50% 
nontumor stromal cells, which include an assortment of 
immune cells (tumor-associated macrophages [TAMs], 
dendritic cells, tumor-associated neutrophils, NK and 
NKT cells, B lymphocytes, and T-lymphocytes), cancer 
fibroblast, adipocytes, vascular endothelial cells, pericytes, 
and lymphatic endothelial cells.[8] ese cells, along with the 
cancer cells themselves, are the sources of these inflammatory 
and immune suppressing factors. is crosstalk between 
tumor stromal cells and cancer cells control tumor behavior.

Cytokine interleukin (IL)-6 and activation of HCMV

Inflammation is also known to activate HCMV, and the 
proinflammatory cytokine IL-6 (from monocyte and 
macrophages) appears to play a particularly important 

role in its activation from a latent stage.[83,159] e effects of 
IL-6 on HCMV behavior are especially important, not only 
in that it activates latent HCMV viruses but also because 
it has been shown to affect a limited subset of genes and 
proteins that are critical for oncomodulation.[74] IL-6 also 
upregulates bone marrow X-linked (BMX) and STAT3 
proteins in both infected and uninfected cells. BMX kinase, is 
overexpressed in glioma stem cells (GSC) and plays a major 
role in tumor growth.[82] STAT3 plays an important role in 
tumor proliferation, invasion, angiogenesis, and immune 
suppression, primarily through stimulation of inflammatory 
pathways such as NFκB and IL-6 [Figure 1].[57,229]

High levels of IL-6 have been associated with a poor 
prognosis in several types of cancer [Figure 1].[181] e major 
source of IL-6 within the tumor microenvironment arises 
primarily from tumor cells and tumor-associated fibroblast. 
HCMV-infected endothelial cells also secrete cytokines 
and chemokines, such as IL-6, TNF-alpha, granulocyte-
macrophage colony-stimulating factor (MCF), macrophage 
inflammatory protein-1, mononuclear protein-1, and 

Table 1: NCMV proteins and their oncogenic effects on cell mechanisms

pUL83

pUS2

pUS28 pUL123

pUL16 Immune Suppression Genomic instability pUL83

pUL122 pUL82

vIL-10

IL-6, Rantes, MCP-1 activation (enhanced inflammation)
VEGF--Angiogenesis (invasion and metastasis)

pUS28 NFкB activation (enhanced inflammation)
Deregulated cellular energetics (Warburg Effect)
Prolonged STAT3 activation (pUL111A) [Immune suppression]

pUL122

pUL123 inhibition of p53, Rb
pUL97 suicide genes

pUL122

pUL123                                                                      Activation of PI3K/Akt pUL122

pUL37X1             Inhibition of Apoptosis (Cell proliferation and survival)
pUL36

pUL122 Activation of telomeres
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metalloproteinases (MMPs).[66] Another way HCMV 
enhances inflammation is by activation of NFκB, which 
increases the release of inflammatory cytokines such as 
TNF-alpha and IL-6 within the tumor microenvironment, 
both from tumor stromal cells and tumor cells.[232] HCMV 
immediate early genes (IE) IE-1-72, IE-2, IE-2-86, and 
IE2-55 regulate NFκB activation.[232] NFκB is dramatically 
activated in most cancers [Figure 5].[7,16]

Chemotherapy, radiotherapy, and other carcinogens in the 
activation of HCMV through Inflammation

It has also been shown that chemotherapy and radiotherapy can 
activate HCMV, which could lead to more aggressive cancers 

following treatment failures.[44,185] Interestingly, both of these 
conventional treatments dramatically increase inflammation, a 
known activator of HCMV. Other known carcinogens, such as 
industrial chemicals, pesticides, herbicides, and several plant-
based carcinogens, also induce inflammation and therefore are 
candidates for HCMV activation.[2] e delay in carcinogenic 
conversion of these exposed cells, even in the case of 
radiation, may be secondary to required metabolic and cell-
signaling changes that would occur over a long period.[17,149] 
Accumulated mitochondrial energy deficits, required for the 
carcinogenic process, may also take time to develop.

Furthermore, of interest is the finding that the viral load of 
HCMV correlated with survival in glioblastoma patients. In 

Figure 5: Activation of COX-2 leading to generation of prostaglandins (PGE2) and subsequent enhancement of inflammation. Tumor 
cell proliferation, angiogenesis and suppression of anti-tumor immune activity are enhanced in the face of tumor microenvironment 
inflammation. e central role played by NFκB, found in all cells, is demonstrated. Activation of this factor occurs in the stromal cells, tumor 
cells and invading immune cells within the tumor microenvironment. PGE2 activation of JAK2/STAT3 acting on genes controlling tumor 
invasion/migration, cell proliferation, angiogenesis and initiating immune suppression is demonstrated.
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one such study, those with low levels of the virus lived twice 
as long as those with the highest titers.[17,149]

In one study, nearly 80% of glioblastoma patients were found 
to have HCMV DNA detected in their peripheral blood, 
which was assumed to be from shedding of the virus by the 
tumor.[132]

Another interesting link to cancer behavior is the finding 
that NFκB differentially regulates the oncogene promoter 
c-Myc.[108] Levels of c-Myc, as well as other protooncogenes, 
such as c-fos and c-jun, are rapidly upregulated following 
HCMV infection of cells.[20,21]

The role of chronic inflammation, HCMV, and cancer cell 
induction

Within the brain, HCMV infection is associated with 
microglial activation and migration of activated macrophages 
to the infected brain.[166] In a study of newborn infections 
in mice it was found that the HCMV virus preferentially 
invaded the external granular layer of the cerebellum and 
that the granule cell progenitor cell numbers were increased, 
thus thickening the external granular layer, a site of origin 
of medulloblastomas and primitive neuroectodermal 
tumors.[171] Blocking TNF-alpha in these infected animals 
prevented the thickening of the external granular layer and 
reduced infiltration of mononuclear cells. It was determined 
that the principle source of the TNF-alpha was the activated 
microglia.[38] HCMV can persistently infect glioma cells 
and are reactivated by inflammation within the tumor 
microenvironment and with immunosuppression.[24,48]

CYTOMEGALOVIRUS (HCMV) TARGETS STEM 
CELLS

It has been hypothesized that mutations in preneoplastic 
cellular tumor suppressor proteins, such as PTEN, p53, and 
p21, and fluctuations in the cellular microRNA profile could 
explain why to develop malignancies, but the most important 
link is to HCMV-infected stem cells.[102] Inflammation, 
and associated generation of reactive oxygen and nitrogen 
radicals, would be a major mechanism by which these 
proteins are mutated. Cytomegalovirus infections have a 
preference for progenitor cells (stem cells) in both congenital 
infections and in adult infection, as shown by its preference 
for localizing in the ventricular and subventricular zone 
where the densest concentration of stem cells reside.[127,147]

HCMV virus has been shown to inhibit differentiation of stem 
cells into neurons but not astrocytes.[107,142] Susceptibility to 
HCMV infection declines with differentiation into neurons, 
but HCMV can infect mature astrocytes.[37] PDGF and its 
receptor are essential for stem cell self-renewal, and PDGF 
inhibits stem cell differentiation into neurons, astrocytes, and 

oligodendrocytes.[69] e PDGF ligand is a powerful stimulus 
for transformation of progenitors into malignant gliomas 
as seen with retroviruses expressing PDGF [Figure 4].[5] 
Interestingly, the HCMV virus is activated by PDGF alpha, 
which is absolutely required for HCMV virus entry into cells, 
activation of essential downstream signaling, and eventual 
viral replication.[189] e importance of the cancer stem cells 
is emphasized by the finding that a single GSC can produce a 
glioma-like tumor in animal models.[78]

Both BMX kinase and IL-6 drive and maintain GSCs.[82,180] 
It has also been shown that HCMV infection upregulates 
stemness regulators in GSCs. For example, in an in vitro study, 
it was shown that at 5 weeks following infection, cellular 
markers for glioblastoma stemness, and aggressiveness 
signature (CD44, CEBPBβ, OLIGO2, and SOX2) were up-
regulated as compared to controls.[74] One of the hiding places 
for latent HCMV viruses is within-host adult stem cells such 
as hematopoietic stem cells in the bone marrow - a major site 
of HCMV persistence.[182] It has also been shown that HCMV 
gene products are expressed at higher levels in CD133+ stem-
like cells fractions, than other glioma cells, again indicating 
the preference of HCMV viruses for stem cells.[124]

Because stem cells play such a key role in the generation 
of cancerous tumors, as well as their maintenance and 
migration, the finding that HCMV preferentially infects these 
cells and could activate virtually all of the essential cancer 
cell-signaling pathways and induce critical metabolic changes 
within cancer stem-like cells, explains why infections of all of 
the cells of a tumor is not necessary for oncomodulation.

Cytomegalovirus and tumor-induced immune evasion

One of the early events in tumor development is suppression 
of antitumor immunity.[212] A number of immune cells can 
kill cancer cells, including natural killer cells, cytotoxic 
T-lymphocytes (T-cells), and macrophages (microglia 
in the brain). It has been shown that in each case, most of 
these cells can be shifted to do just the opposite  -  that is, 
block immune killing of cancer cells.[14] Initially, these 
immune cells were described as either being in an M1 (killer 
mode) or M2 (immune suppression mode) phenotype, 
with the ability to switch back and forth as needed. It is 
now thought that rather than being two modes of immune 
function, these cells actually transition along a greater range 
of activity.[93] For convenience sake, I will use the older 
classification - M1 and M2.

Tumor microenvironment and immune cells suppressing 
antitumor activity

It has been observed that the tumor microenvironment 
generates factors that suppress antitumor immunity early in 
the course of the carcinogenic transition. is involves not 
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only cancer cells but also surrounding stromal cells, which 
are induced by the tumor cells to release immune evading 
and suppressing mediators. ese immune-suppressing 
mediators include PGE2, anti-inflammatory cytokines, 
chemokines, and COX-2. PGE2 interacts with nontumor 
cells in the tumor microenvironment, which stimulates 
inflammation but also suppresses antitumor immunity.[213]

Role of inflammation in the growth of tumors; COX-2 is a 
tumor growth factor and NASIDs inhibit of COX-2

It has been established that an inflammatory tumor 
microenvironment is crucial for sustained tumor cell 
proliferation, immune evasion, suppression of apoptosis 
mechanisms, angiogenesis, tumor invasion, and tumor cell 
migration. Tumor cell-induced COX-2 within the tumor 
microenvironment activates PGE2, which also promotes 
tumor growth by stimulating inflammation-driven stem cell 
signaling pathways essential for tumor behavior.[213] COX-2 is 
known to be elevated significantly in a number of tumors and 
suppression of COX-2 by NSAIDs can significantly inhibit 
the development, as well as growth and invasion, of many 
of these tumors.[63,119,162] NSAIDs also reduce virus-mediated 
PGE2 production and reduce the viral burden in HCMV 
infected cells.[193,209] Celecoxib, the specific COX-2 inhibitor, 
has been shown to reduce PGE2, as well as HCMV expressed 
proteins in medulloblastomas along with reducing tumor 
growth both in vitro and in vivo.[12]

Interestingly, combining antiviral drugs with COX-2 
inhibitors significantly inhibited tumor growth in mice 
engrafted with human medulloblastoma tumors, more so 
than when the antiviral was used alone [Figure 3].[12]

HCMV generated proteins that are immune suppressant 
and tumor stimulating

It has been shown that HCMV generates a number of 
special proteins in the tumor cell such as US28, which can 
bind different chemokines external to the tumor cell in its 
environment such as CCL2, CCL5, and CX3CL1 and thus 
suppressing antitumor immunity.[59,190,191] Other HCMV viral 
proteins associated with immune suppression in the tumor 
microenvironment include US11, US2, US3, US8, which 
block cytotoxic T-cell killing, and US3 and US58 which 
block CD4+ T-cells. Cancer cells expressing the HCMV viral 
protein UL16 are protected against NK and cytotoxic T-cell 
destruction.[94]

HCMV US28 viral proteins have also been shown to 
upregulate high levels of COX-2 in HCMV infected 
cells.[11] HCMV is also known to establish latency in myeloid 
lineage cells and that reactivation of the virus is dependent 
on inflammation. By persistently infecting monocytes/
macrophages, the virus can induce strong inflammatory 

responses when these cells are migrating to the tumor 
microenvironment.[186] e infiltrating TAMs are switched 
to the M2 immunity-suppressing mode within the tumor 
microenvironment.

Studies have shown that HCMV protein expression has 
been detected in infiltrating inflammatory cells within 
the tumor microenvironment in human breast and 
colon cancers.[35,85] Similar infiltrations of inflammatory 
macrophages and microglia cells by HCMV have been 
detected in gliomas.[192] HCMV is known to stimulate the 
immune suppressing cytokines IL-10 and transforming 
growth factor-β (TGF-β) within infected tumors.[68]

Immune cells using IL10 cytokine and other factors to delay 
immune activation against the tumor; Also by HCMV

One of the more prominent immune inhibitors generated by 
human immune cells is IL-10, a T-helper ()-2 cytokine. 
Some pathogens use IL-10 to delay immune activation so 
as to establish infection.[157] HCMV encodes a UL11A gene 
product that is closely related functionally to human IL-10 
(cmvIL-10), which has very potent immunosuppressive 
properties through inhibiting mononuclear proliferation, 
suppression of cytokine production, inhibition of dendritic 
cell maturation and migration, and downregulation of MHC 
expression.[155,195] In glioma cells, cmvIL-10 is expressed early 
during stages of HCMV infection. As mentioned, GSCs are 
preferentially infected in vivo by HCMV as are macrophages 
and microglia within the glioblastoma cell microenvironment, 
which also produce cmvIL-10.[68] Also, of importance, 
was the finding that cmvIL-10 treated monocytes produce 
angiogenic vascular endothelial growth factor (VEGF) and 
immunosuppressive TGF-β, which enhances tumor cell 
growth and migration. Overall, HCMV-infected monocytes/
macrophages within the tumor microenvironment greatly 
increase the production of immunosuppressive factors such 
as VEGF, IL-10, TGF-β, and PGE2.[101] e virus HHV-6 is 
known to upregulate immunosuppressive cytokine IL-10 and 
inhibit antitumor IFN-γ, thus engineering a shift from 1 
to 2 phenotype immunity.[3] Of interest is the finding that 
reactivation of HHV-6 is usually associated with reactivation 
of other herpesviruses such as HCMV and EBV.[130]

rough a complex interaction between tumor cells and 
TAMs (immunosuppressive macrophages/microglia), HCMV 
infections appear to impair tumor antigen presentation 
by dendritic cells within the tumor microenvironment.[51] 
HCMV UL83 gene product pp65, which is found consistently 
in glioblastoma cells, blocks antigen presentation of viral 
protein IE1.[51]

It is evident that HCMV controls a number of tumor cell and 
stromal cell mechanisms within the tumor microenvironment 
that can prevent antitumor immunity from functioning.
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HCMV-ACTIVATED SIGNAL TRANSDUCER 
AND ACTIVATOR OF TRANSCRIPTION (STAT) 
PROTEINS AND IMMUNE EVASION

STATs stimulate inflammatory response and direct 
antiimmune environment around the tumor

STAT family of proteins, within immune cells and tumor cells 
within the microenvironment, consists of seven members, 
STAT 1-6 and closely related STAT5A and STAT5B, which 
control specific biological responses [Figures 1 and 4].[207] 
Of these proteins, STAT3 appears to play a major role in 
promoting immune evasion by the tumor, but it also controls 
tumor invasion, angiogenesis, and other tumor promoter 
mechanisms.[216] STAT3 has also been shown to regulate 
glioblastoma stemness.[82] e cytokine IL-6 upregulates 
BMX kinase and STAT3 proteins in both infected and 
uninfected cells. BMX knockdown (removal) has been shown 
to suppress tumor growth.[82,86] STAT3 selectively induces 
and maintains an inflammatory tumor microenvironment 
that supports cancer at all its stages.[81,216] In addition, STAT3 
and less so STAT5 and STAT6 play a major role in inhibiting 
antitumor immunity.[106,131,169] By selectively inhibiting 
antitumor activities of NFκB and STAT1, STAT3 antagonizes 
1 cytokines such as IL-12 and interferon-γ, which are 
critical for innate T-cell antitumor immunity.[106,228] STAT3 is 
essential for expression of inflammatory cytokines such as IL-
1β, IL-6, MCF, PGE2, and COX-2 necessary for maintaining 
the inflammatory tumor microenvironment.[229] Immune 
inhibitors, such as STAT3, can increase inflammation while 
at the same time reducing antitumor immunity.

Both NFκB and STAT3 are persistently activated in 
cancer cells, where they function as nuclear transcription 
factors required for activation of genes involved in tumor 
proliferation, survival, angiogenesis, immune evasion, and 
tumor invasion.[55,227]

STAT3 is also involved in suppressing innate antitumor 
immunity by promoting the conversion of antitumor 
macrophages into immune-suppressing TAMs and by 
stimulating the migration of myeloid-derived suppressor 
cells (MDSCs) to the tumor microenvironment.[40,105] Both 
STAT3 and STAT6 have been implicated in stimulating 
immunosuppressive MDSCs.[36,125,145] In addition, STAT3 
mediates expansion of immune suppressing regulatory 
T-cells (Tregs) within tumors [Figure 6].[105]

Crosstalk intercellular communication between tumor 
cells in the tumor microenvironment inhibiting antitumor 
immunity

e persistent activation of STAT3 within tumor cells 
crosstalks with surrounding immune cells within the 
tumor stroma and microenvironment to inhibit antitumor 
immunity.[203,228] It has also been shown that overexpression 
of IL-6-JAK-STAT pathway can drive carcinogenic behavior 
without gene mutation.[163]

Activation of STAT 3 signaling by other viruses and other 
agents

A number of tumor viruses can activate the STAT3 
pathway, including HCMV, EBV, HPV, HTLV virus, and 
hepatitis B virus [Figure 6].[113,138,183,204] STAT3 can also be 
activated by other noninfectious stresses, including direct 
lipopolysaccharide stimulation through toll-like receptor 
4 immune activation, UV light induction of skin cancer, 
chemical carcinogenesis, and chronic stress.[4,104,168] In 
the case of colitis-induced carcinoma, we see that STAT3 
signaling is required for cancer induction.[22] In fact, in the 
absence of STAT3, in experimental carcinogen-induced 
colorectal cancers, one sees continued inflammation without 
tumor formation.[22]

Figure 6: Demonstrating persistent activation of STAT3 by inflammatory cytokines within the tumor environment, which activates 
cytoplasmic REL/NFκB chronically. In combination, this suppresses anti-tumor immunity and stimulates tumor cell proliferation.
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How STATs influence gene regulation and apoptosis, 
leading to suppression of the immune response to tumors 
and to Stimulation of tumor cell growth and invasion 
mechanisms

Closely linked and critical to STAT3 pathway activation 
is the cytokine IL-6, downstream from NFκB.[54] COX-2, 
which is also downstream from NFκB, is involved in cancer 
inflammation and activates STAT3 through IL-6 [Figure 6].[54]

A number of inflammatory cytokines can activate STAT3 
through NFκB/IL-6 signaling, including IL-17, IL-21, and IL-
23.[39,143,216]

NFκB has a dual role in cancer, acting either an anticancer 
pathway or procancer pathway by regulating different sets of 
genes.[13,111] STAT3 inhibits the expression of the anticancer 
gene regulation by NFκB through inhibiting genes that 
normally would activate 1 innate immunity and adaptive 
immunity used in controlling tumor growth.[228]

e procarcinogenic factor RELA is persistently activated 
in tumor cells and tumor-associated immune cells and 
requires continuous activation of STAT3.[111] REL, a 
regulator of immunostimulating cytokines and chemokines 
needed for antitumor immunity, is not activated in cancer 
cells. In addition, STAT3 can directly antagonize STAT1, 
which prevents one of the major antitumor pathways from 
operating [Figure 6].[88]

By activating STAT3, HCMV viruses affect a number of 
cancer processes including proliferation, invasion, migration, 
angiogenesis, and inhibition of apoptosis. Virtually, all of the 
alterations we see regarding immune evasion by cancers can 
be initiated by HCMV infections.

HCMV INHIBITION OF APOPTOSIS 
MECHANISMS CONTROLLED WITHIN THE 
MITOCHONDRIA

Cancer cells universally inhibit apoptosis by a number of 
mechanisms. Virtually every mechanism used to inhibit 
apoptosis can also be utilized by HCMV viruses, to not 
only suppress apoptosis but also to inhibit other tumor cell 
survival mechanisms. For example, in myeloma cells, IL-6 
drives JAK-STAT3 pathway activation, which upregulates 
antiapoptotic genes [Figures 1 and 5].[32] Most apoptosis 
mechanisms are controlled within the mitochondria, initiated 
through extrinsic activation of death signals acting on 
TNFR1, fas, or trail receptors, which then cleave precursors 
to release caspase 8 and 9 [Figure 7]. A large number of viral 
products (viral genome directed molecules) are localized in 
the mitochondria and interact with mitochondrial proteins 
to suppress metabolic systems and apoptosis mechanisms.[219] 
e viral gene locus UL37 produces one of the most abundant 
viral proteins in HCMV infections, pUL37x1/vMIA, 

which is one such inhibitor of apoptosis.[9,218,219] is viral 
factor has potent antiapoptotic activity by binding to BAX 
apoptotic protein on the outer mitochondrial membrane 
(OMM).[218] HHV-8 virus produces a glycoprotein, K7, which 
has structural homology to survivin, an antiapoptotic cellular 
protein, which inhibits BAX-induced apoptosis by tethering 
Bcl-2 and active caspase-3 to inhibit caspase apoptotic 
activity.[214]

As pointed out by Williams and Colberg-Poley, viruses may 
encode death receptor decoys, regulate endogenous death 
receptor expression, direct caspase inhibitors, modulate Bcl-
2 family of proteins, or express their own viral homologous 
cellular Bcl-2 protein family members, to evade apoptosis.[219] 
e antiapoptotic viral Bcl-2 homolog protein molecules are 
commonly employed by all gamma-herpesviruses, such as 
HCMV, as a mechanism of cellular persistence. Similar Bcl-
2 protein homologous produced by these viruses include 
KsBcl-2 and K7 protein of HHV-8, E1B-19K of adenovirus, 
and BHRF1 and BALF-1 of EBV.[150] E1B-19K protein also 
interacts with p53 to suppress mitochondrial-mediated 
apoptosis induced by p53.[41] Viruses encoded proteins can 
control cell suicide genes such as p53 and retinoblastoma 
proteins (Rb) [Figure 5].[234]

e major antiapoptotic members include Bcl-2 and Bcl-XL. 
It has been shown that HCMV-infected neuroblastoma cells 
were significantly less sensitive to cytotoxic anticancer drugs, 
such as cisplatin and etoposide, than noninfected cells.[44] 
Treating the infected cells with the antiviral drug ganciclovir-
restored cytotoxic sensitivity to the drugs.

Other mechanisms responsible for evading cell death, 
such as enhancement of telomerase and a shift in error-
prone DNA repair, are also playing a role in viral evasion 
of tumor cell apoptosis. It has been shown that HCMV 
induces constitutive activation of human telomerase reverse 
transcriptase (hTERT) in malignant glioma cells lines and 
most malignancies.[46,199] It is activation of hTERT that shifts 
the balance toward DNA repair. Straat et al. demonstrated 
that ectopic expression of the HCMV protein IE72 alone, 
of over 200 viral proteins, was sufficient to reproduce the 
viral effect on hTERT promoter activation and increased 
production of telomerase in cancer cells.[200] It has also been 
shown that constitutional activation of hTERT is sufficient to 
immortalize normal diploid cells.[46]

Viral gene IE1 was also found to inactivate p53 and Rb tumor 
suppressors, while at the same time upregulating the activity 
of the procancer cell signaling pathway PI3-K/AKT, which 
enhances tumor cell survival.[50] IE1 viral genome expression 
in malignant gliomas is positively correlated with the grade of 
the tumor with GBM having the highest levels.[170] is viral 
gene factor is also correlated with survival in glioblastoma 
patients.[186] HCMV IE1 gene is found in most tumors and 
causes proliferation of glioblastoma cells lines.[50]
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Activation of the PI3K/Akt cell signaling pathway is also 
important for inhibition of apoptosis in tumor cells, primarily 
by inhibiting the apoptosis factor BAD and restoring the 
antiapoptotic factors bcl-XL and bcl-2.[47] Many factors can 
activate PI3K/Akt pathway and several viruses, including 
some herpes viruses, such as EBV and HCMV viruses, 
have been shown to activate this tumor essential signaling 
pathway.[95] Akt activation has been correlated with the depth 
of tumor cell invasion, infiltration of venous blood vessels, 
lymph node metastasis, and stage of the disease [Figure 3].[92]

TUMOR ANGIOGENESIS INDUCED BY VIRAL 
PROTEINS

Angiogenesis begins very early in tumor growth.[30] is 
new blood vessel growth is needed to bring nutrients and 
oxygen to the tumor microenvironment. ere are a number 
of known proangiogenic proteins released into the tumor 
microenvironment from tumor cells, such as VEGF, basic 
fibroblast growth factor (FGF), FGF-binding protein (BP), 
CXC chemokines (CXCL8, CXCL1), placenta-like growth 

factor, TGF-β, platelet-derived endothelial growth factor 
(PD-EGF), and pleiotrophin.[29] Fibroblasts, near the tumor 
bed, also produce proangiogenic factors.[97,154] e tumors 
themselves recruit progenitor endothelial cells from the bone 
marrow, used to construct new blood vessels. In addition, 
angiogenic suppressor proteins used to inhibit angiogenesis 
released by stromal cells in the tumor microenvironment, 
such as thrombospondin 1 and 2, are inhibited.[75] e 
hypoxic tumor microenvironment triggers the release of 
hypoxia-inducible factor (HIF)-1α from tumor cells, which 
upregulates several of these angiogenic factors.[172] HIF-
1 is a transcriptional factor whose release is triggered by 
hypoxia and plays a critical role in the cell’s response to 
reduced oxygen tension, including angiogenesis. Tumor-
induced angiogenesis involves both arterial and lymphatic 
endothelial proliferation. In addition, HIF-2α has been 
shown to convert stem cells to cancer stem cells and induced 
breast cancer chemotherapy resistance by activating Wnt and 
Notch pathway cell signaling.[224] Wnt and Notch signaling 
play a key role in the development of cancer stem cells and 
stemness maintenance.[98] Tumor hypoxia is associated with 

Figure 7: Induction of anti-apoptosis factors through JAK/STAT3 signaling, survival receptors and growth factor receptors.
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a high-grade malignancy, a poor prognosis and is associated 
with resistance to chemotherapy and radiotherapy.

Viral oncoproteins from several types of viruses have also 
been shown to stimulate the production of several angiogenic 
factors, including VEGF and FGF-BP, by stimulating their 
gene promoters in the nucleus.[116,199] HCMV infections 
have been shown to impair the expression of the angiogenic 
suppressors TSP-1 and TSP-2 in several cell lines, including 
glioblastoma cell lines.[43] Loss of these suppressor proteins 
enhances angiogenic vessel growth. It has been shown that 
a lack of TSP-2 gene expression was significantly associated 
with a higher histological tumor grade as well as density 
of angiogenic vessels in glioblastoma tumors in patients, 
and TSP-1 expression is inversely correlated with tumor 
vascularity in colon cancer metastasis.[100,120]

HCMV infections are characterized by a widespread 
presence of viruses in the vessel walls of major arteries 
throughout the body.[87] CMV is known to infect and insert 
viral proteins in all cell types involved in angiogenesis, 
including endothelial cells, smooth muscle cells, pericytes, 
fibroblast, and macrophages.[28] It has been shown that 
HCMV is unique among herpes viruses in promoting the 
release of a number of soluble factors (secretome) involved in 
angiogenesis.[66] e viral secretomes also contain a number 
of factors, such as MMPs that penetrate vessel walls and 
tissue basal membranes. In essence, the HCMV secretome 
proteins play a major role in all aspects of angiogenesis and 
thus modulates the cancer process in established tumors.

METABOLIC ONCOMODULATION

Change from oxidative phosphorylation to aerobic 
glycolysis in tumor cell metabolism (Warburg effect) and 
the role of HCMV

Cancer cell metabolism plays a critical role in cancer cell 
behavior. ese metabolic pathways offer a valuable target 
for treating and possibly curing many of the more aggressive 
cancers. One of the characteristics of cancer cells is a radical 
shift in metabolism that occurs quite early in the carcinogenic 
process.[173]

In the 1920s, Otto Warburg hypothesized that mitochondrial 
dysfunction was the cause of most cancers and that cancer 
cells switched from oxidative phosphorylation to aerobic 
glycolysis during malignant transformation of cells.[217] 
Recent studies have confirmed Warburg’s hypothesis, yet 
the process is not always operational since in conditions of 
need, cancer cells can temporally switch back to oxidative 
phosphorylation.[72] Porporato et al. have pointed out that 
malignant cells show considerable metabolic plasticity, 
being able to shift metabolism as conditions in the tumor 
microenvironment change during tumor progression.[152]

One of the early events in malignant cell transformation is 
the dramatic increase in glucose uptake. is is accomplished 
in malignant cells by an increase in glucose transporters, 
GLUT1, and GLUT3, with higher levels of activation being 
associated with a poor prognosis.[6,73]

Rapidly proliferating cells have a need for accelerated 
macromolecule biosynthesis, such as amino acids, 
nucleotides, and lipids. is need is met by reducing 
mitochondrial respiration, which allows accumulation 
of intermediate precursors from glycolysis, which are 
then used for such synthesis, mainly through the pentose 
phosphate pathway [Figure 8].[153] In addition, by reducing 
mitochondrial energy production by the Krebs cycle and the 
electron transport system, fewer free radicals are produced 
that could trigger apoptosis. Other mitochondrial apoptosis 
systems are also inhibited by the metabolic switching of 
metabolism, as well as inhibition of mitochondrial antitumor 
immunity.

Interestingly, HCMV has been shown to also reprogram 
infected cells toward a Warburg-like metabolism 
[Figure 8].[136] Moreover, as we saw in the case of cancer cells, 
a great deal of glycolysis is directed toward macromolecule 
synthesis.[136,137] is glycolysis switch increases the 
production of substrates for the biosynthesis of nucleotides, 
fatty acids, and lipid for viral reproduction.[10,197]

HCMV-infected cells also require an increased supply of 
glucose. By switching GLUT1 to GLUT4, the virus allows 
glucose to be transported at a rate threefold higher than can 
be attained by GLUT1.[230] is increases the rate of aerobic 
glycolysis.

e efflux of glucose carbons from TCA cycle forms citrate, 
which supports fatty acid synthesis in a similar way to 
tumor cells.[136,137] It is important to appreciate that HCMV 
viruses upregulate metabolic and biosynthetic enzymes 
needed for increasing the activity of glycolysis, which 
both increases ATP generation as well as macromolecule 
biosynthesis.[136] Removal of citrate from the citric acid cycle 
in HCMV-infected cells has the same effect in as in tumor 
cells, that is, a great decrease in glucose-derived carbon in the 
TCA cycle, which decreases the biosynthetic intermediates 
and ATP.[137]

Glutaminolysis as a source of energy production

In Figures 3, 8, and 9, as glycolysis only produces two ATP 
molecules, both cancer cells and the HCMV-infected cells 
require glutamine for most of its energy production.[34] 
Glutamine uptake is increased during HCMV infection, as in 
tumor cells, by the process of glutaminolysis. Inside the cell, 
glutamine interacts with the enzyme glutaminase producing 
glutamate, which is then converted into alpha-ketoglutarate 
by the enzyme glutamate dehydrogenase, which then enters 
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Krebs cycle, thus supplying metabolic intermediates for the 
Krebs pathway (anaplerosis) taking place in the mitochondria 
[Figure 8].[60,222] is is similar to what we see in tumor cell 
metabolism.[140] Glutamine starvation in cultures using 
most normal cells has little impact, but in the case of cancer 
cells overexpressing c-Myc, glutamine deprivation induces 
death due to glutamine dependence.[137,231] c-Myc triggers a 
transcriptional program that promotes glutamine uptake and 
conversion to alpha-ketoglutarate, resulting in glutamine 
addiction.[222] Several studies have shown that c-Myc mRNA 
and protein levels are elevated in HCMV infections.[20,135] e 
glutamine starvation effect can be reversed using pyruvate or 
oxaloacetic acid.

Glutamine stimulates a further accumulation of lactate 
(through malate formation), which increases glycolysis 
and NADPH generation, and this buffers oxidative stress 
within the cells, thus protecting the virus and the tumor 
cell.[60] Glioblastoma cells develop high rates of glutamine 

metabolism, which is the preferred source of carbon for 
biosynthesis of metabolic intermediates.[60] Inhibiting 
glutamate dehydrogenase, the rate-limiting enzyme for alpha-
ketoglutarate generation, has been shown to be an effective 
anticancer strategy for GBM when combined with agents that 
deplete glucose and inhibit specific kinases, such as Akt.[225] 
Catechin gallate and epigallocatechin-3-gallate, from green 
tea have been shown to inhibit glutamate dehydrogenase, 
which converts glutamate into alpha-ketoglutarate to be 
utilized for substrate formation.[114]

It is assumed by many researchers that the beneficial effect of 
glutamine metabolism for the tumor cells rests on supplying 
TCA cycle intermediates for biosynthesis of metabolic 
products, generation of glutathione and generation 
of NADPH required to keep glutathione in a reduced 
state.[222] Yet, considerable evidence suggests that glutamate 
accumulates outside the cancer cell, and changes in tumor 
behavior are directly related to glutamate interacting with 

Figure 8: Warburg effect, altering cellular metabolism to maximize use of glycolysis and Kreb’s cycle intermediates for biosynthesis of lipids, 
proteins and nucleotides for viral and cancer cell reproduction. Demonstrating glutaminolysis pathway for converting glutamine to glutamate 
and then to alpha-ketogluterate within Kreb’s cycle, used for biosynthesis of substrates.
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glutamate receptors, both on tumor cells and stromal cells 
within the tumor microenvironment.

Glutamate, glutamate receptors, and tumor behavior

Circulating levels of glutamate are elevated in breast and 
prostate cancer patients (as well as a number of other tumor 
types) and high levels signify a poor prognosis.[26,33,96,103,110] In 
a recent study of breast cancers, serum levels of glutamate, 
but not glutamine or lactate, were elevated in tumor-
bearing animals over time.[65] In the study, using a primary 
mammary carcinoma model, researchers measured a broad 
range of metabolites in the circulation and found that 
only glutamate levels correlated with tumor burden, with 
the tumors themselves being the source of the glutamate 
[Figure 3]. e tumor released glutamate at a rate that 
correlated with glutamine consumption. ey did not see 
glutamate accumulating around normal breast epithelial 
cells, even with glutamine consumption. Inhibition of the 
system Xc-antiporter using sulfasalazine, potently reduced 
the glutamate release by the tumors. System Xc-antiporter is 
a cellular mechanism that exchanges extracellular cystine for 
intracellular glutamate, which raises extracellular glutamate 
levels.[115,178]

 Normally, this extracellular glutamate is 
removed by the glutamate transport proteins, such as GLT-1 
(EAAT-2). What this study demonstrates is that elevated 
levels of extracellular glutamate are derived not primarily 
from glutaminolysis but rather the system Xc-  antiporter. 
Excess glutamine, in this case, is converted within the cell by 
glutaminase to glutamate and is then converted into alpha-
ketoglutarate to be used as a substrate for the cancer cell.

Further, they demonstrated that glucose depletion had no 
effect on invasiveness, but depletion of glutamine significantly 
reduced invadopodia protrusions and length. Adding 
glutamate to the medium restored invasive protrusions. 
at glutamate receptors on the invadopodia were involved 
in tumor invasion was demonstrated by the finding that 
inhibiting Group II metabotropic glutamate receptors also 
inhibited invasive protrusions on tumor cells. Antagonizing 
Groups I and II metabotropic glutamate receptors had no 
effect on invasiveness. Using a metabotropic glutamate 
receptor Group II agonist (LY40) promoted invasiveness.

Transmembrane release of matrix metalloproteinase (MMP) 
plays a major role in proteolytic invasion of the surrounding 
matrix by cancer cells. In cancer cells, MMPs becomes 
concentrated within the invadopodial structure.[31] Another 
study confirmed that glutamate plays a major role in activating 
the MMP system.[65] Normal breast epithelial cells secrete 
very little glutamate as compared to cancer cells. In this same 
study, exposing normal breast epithelial cells to high levels 
of glutamate led to increased recruitment of matrix MMP 
vesicles to the plasma membrane and resulted in invasion of 
the basement membrane surrounding the extracellular matrix. 

ey concluded that glutamate increased tumor invasion by 
stimulating Group II metabotropic GRM3 glutamate receptors, 
which enhanced trafficking of MMPs to the cell surface of the 
invadopodia, thus increasing tumor invasion.

Tumor cells are not the only source of high levels of glutamate, 
as stromal fibroblast within the tumor microenvironment can 
also release very high levels of glutamate.[65] Extracellular and 
plasma glutamate levels have been shown to be predictive 
of survival in medulloblastomas. For example, Wilson et al. 
found that glutamate levels were significantly predictive of 
survival among 35 cases of medulloblastoma despite other 
known risk factors.[220] Glutamate levels were predictive 
of survival in high-risk patients alone, with patients with 
low glutamate levels being alive 8 years after diagnosis and 
patients with high levels dying within 1 year. Patients with 
c-Myc overexpression had the worst prognosis and the highest 
glutamate levels, as they are more dependent on glutamine 
than glucose.[225] It is known that medulloblastomas with 
overactivation of c-Myc have the poorest prognosis.[225] is 
process applies to other tumors as well.

Glutamate receptors and tumor invasiveness

Ye et al. demonstrated that high-grade pediatric gliomas 
released high levels of glutamate that enhanced tumor 
invasiveness by a process of excitotoxicity at the leading edge 
of the tumor.[226] Others have shown that stimulating calcium-
permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptors (GluR2-lacking AMPA receptors) 
also stimulates tumor cell proliferation, invasion, and 
mobility.[90,118,141] Even though gliomas contain no functional 
N-Methyl-d-aspartic acid (NMDA) receptors (having low 
levels of the NRI subunit), inhibiting of these receptors inhibits 
proliferation and migration of glioma cells.[118,164]

How the NMDA receptor antagonists are inhibiting tumor 
proliferation and migration is not specifically known but it may 
be through inhibiting ERK1/2 and CREB phosphorylation, cell 
signaling pathways that regulate cell proliferation.[198] Selected 
metabotropic glutamate receptors are also linked to proliferation, 
differentiation, and tumor survival in neural tumors, which 
include medulloblastomas and high-grade gliomas.[89,141] Ectopic 
expression of glutamatergic mGluR1 in normal melanocytes has 
been shown to cause hyperproliferation and transformation to 
malignant tumors.[123,141]

Failure of glutamate clearance from the tumor 
microenvironment

Interestingly, it has been found that glioma cell lines isolated 
from patient’s malignant gliomas lack the glutamate transport 
protein EAAT-2 (GLT-1), which is the main glutamate 
clearing protein in the brain.[56] is is especially important 
in that GLT-1 is critical for clearing extraneuronal glutamate 
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resulting from overactivity of system Xc-antiporter. When 
this happens, glutamate levels can rise significantly in the 
brain’s extraneuronal space, driving tumor proliferation, 
invasion, and metastasis (migration). In monolayers of 
glioma cell cultures, cystine, the substance exchanged for 
glutamate, can raise extraneuronal glutamate levels some 
500-fold within a few hours.[188,226]

Calcium and tumor growth

It is known that calcium oscillations play a critical role in 
tumor invasion and tumor cell migration (metastasis).[121] 
NMDA receptors are essentially nonfunctional in gliomas 
as the leading cellular calcium transport receptor. Calcium 
oscillations (waves of variations in calcium concentration) 
in the tumor microenvironment arise from calcium 
permeable AMPA receptors, which lack the GluR2 subunit 
[Figure 10].[61,188] Glutamate receptors are constructed of 
a number of subunits, and the GLuR2 subunit is essential 
for inhibiting calcium permeability to the AMPA receptor. 
[Tables 2 and 3] Ishiuchi et al. and others demonstrated the 
essential role played by these special glutamate receptors by 
transfecting the GluR2 subunit into glioma cells (making the 
calcium impermeable), which made them unable to respond to 
glutamate with calcium oscillations.[91,188] When these altered 
tumors were implanted into animals, the tumors were unable 
to invade. Ishiuchi et al., as well as others, also demonstrated 
that glioblastoma cells highly expressed GluR1 and GluR4 

subunits, which increased the tumor’s invasive properties.[90,148] 
Calcium-permeable AMPA receptors were seen to be more 
numerous in medulloblastomas and ependymomas as well.[25] 
Activation of calcium-permeable AMPA receptors has been 
shown to inhibit human glioblastoma apoptosis by activation 
of Akt, the cell survival signaling pathway that also promotes 
tumor cell migration.[42,91,133] Likewise, inhibiting AMPA 
receptors inhibited activation of the anti-apoptotic Akt 
pathway.[91] e Akt cell signaling system is central to tumor 
behavior and survival.[62,179,187]

One of the important links to viral infections and other 
inflammatory conditions to the aggressive behavior of cancer 
is that inflammation increases trafficking of GluR2-lacking 
AMPA receptors (calcium permeable AMPA receptors) 
[Figure 10].[19,146,221] Considerable evidence suggests that these 
special AMPA receptors increase intraneuronal calcium 
levels and trigger calcium oscillations that activate tumor cell 
invasion and motility.[118] Glioma released glutamate has also 
been shown to stimulate the growth of malignant gliomas.[206]

VACCINATIONS USED TODAY AND THEIR 
POTENTIAL THREAT IN THE CAUSATION OF 
CANCER

Of great interest is the finding that even a single viral protein, 
such as US28, when injected in an experimental animal can 
result in tumor development.[126] is is of real concern in 

Figure 9: Immunoexcitotoxicity: Effect of TNF-alpha on trafficking of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptors to synapse and mechanism for elevation of extracellular glutamate levels resulting in enhanced aggressiveness of tumors.
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vaccine development as a number of vaccines contain viral 
components as contaminants, including viral proteins.[201,211]

No real effort is being made to remove these viral fragments 
and proteins from vaccines. With millions of people being 
vaccinated with these contaminated vaccines, a real and 
present danger of disease induction exists, including 
induction of cancers. Even with nononcogenic viruses, the 

oncomodulatory effects would have the potential to make 
many cancers much more aggressive and therefore deadly.

Little comfort comes from claims of no evidence of human 
disease from these vaccine contaminants, as most studies are 
not long term. If we use HCMV as a prototype, with a large 
percentage of people in the world carrying the virus, while 
it is not associated with causing cancer, as this paper shows, 
it has major oncomodulatory effects on established cancers.

NEUTRACEUTICALS AND THEIR ANTIVIRAL 
EFFECT AS A TUMOR SUPPRESSOR

It has been shown that several naturally occurring 
compounds, such as curcumin, quercetin, baicalin, luteolin, 

Table  2: Lonotropic glutamate receptors and their assigned 
subunits. In parentheses is the older nomenclature

Glutamate receptor family Subunits (Older nomenclature)

AMPA GluA1 (GluR1)
GluA2 (GluR2)
GluA3 (GluR3)
GluA4 (GluR4)

Kainate GluK1 (GluR5)
GluK2 (GluR6)
GluK3 (GluR7))
GluK4 (KA-1)
GluK5 (KA-2)

NMDA GluN1 (NR1)
GluN2A (NR2A)
GluN2B (NR2B)
GluN2C (NR2C)
GluN2D (NR2D)
GluN3A (NR3A)

Table 3: Metabotropic glutamate receptor subunits. Group I through 3

Metabotropic glutamate receptors

Group I mGluR1
  mGluR5
Group II mGluR 2
  mGluR3
Group III mGluR4
  mGluR6
  mGluR7
  mGluR8

Figure 10: Glutamate receptors with trafficking of calcium-permeable AMPA receptors to synaptic cleft induced by inflammatory cytokine 
TNF-alpha activation of TNFR1 receptor activation. Oncomodulatory viruses induce high levels of TNF-alpha.
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and resveratrol can suppress replication of a number of viruses 
both in vitro and in vivo.[58,70,71,117,139,210,223] Curcumin has also 
been shown to be a powerful inhibitor of IL-6, which plays a 
critical role in all cancers and HCMV oncomodulation.[79] In 
addition, these compounds have been shown to not only have 
anticancer effectiveness when used alone but also enhance 
the effectiveness and safety of traditional treatments, such as 
radiotherapy and chemotherapy.[165,202,208,215] Several natural 
compounds also inhibit immunoexcitotoxicity and can lower 
glutamate levels.[18,194]

Grape seed proanthocyanadins extract has been shown to 
reduce calcium entry associated with calcium-permeable 
AMPA receptors, which during states of inflammation 
constitute a major source of intracellular calcium and 
calcium oscillations.[1]

CONCLUSION

e new finding that certain viruses, while not definitely 
transforming normal cells into tumor cells, can have dramatic 
effects on their behavior at all levels of the carcinogenic 
process. By an oncomodulatory series of mechanisms, viruses 
can make several cancers more aggressive and more likely to 
metastasize. e HCMV produces over 200 proteins, only a 
few of which have to do with viral replication - most being 
involved in altering host cell behavior.[186]

Unfortunately, despite the clear demonstration of 
oncomodulation by this virus and others, viral testing is not 
routine for cancer patients. Of even more concern, is the 
fact that utilizing antiviral treatments along with traditional 
treatments is not routine, but in my opinion, should be. A 
number of cited studies have shown that such combinations 
can significantly improve long-term survival, even for 
some of the more aggressive cancers, such as glioblastoma, 
inflammatory breast cancer, and medulloblastoma.

It appears reasonable, based on the literature, to test all cancer 
patients for the presence of HCMV, EBV, and HSV-1 and 2, 
and if found to be infected, these patients should undergo 
antiviral treatments - either natural or pharmaceutical.
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