- Section of Neurosurgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Neurology, The University of Chicago Medical Center, Chicago, IL, USA
Correspondence Address:
Ben Z. Roitberg
Section of Neurosurgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
DOI:10.4103/2152-7806.84241
Copyright: © 2011 Esposito DP. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.How to cite this article: Esposito DP, Goldenberg FD, Frank JI, Ardelt AA, Roitberg BZ. Permanent cerebrospinal fluid diversion in subarachnoid hemorrhage: Influence of physician practice style. Surg Neurol Int 30-Aug-2011;2:117
How to cite this URL: Esposito DP, Goldenberg FD, Frank JI, Ardelt AA, Roitberg BZ. Permanent cerebrospinal fluid diversion in subarachnoid hemorrhage: Influence of physician practice style. Surg Neurol Int 30-Aug-2011;2:117. Available from: http://sni.wpengine.com/surgicalint_articles/permanent-cerebrospinal-fluid-diversion-in-subarachnoid-hemorrhage-influence-of-physician-practice-style/
Abstract
Background:Acute hydrocephalus (HCP) after aneurysmal subarachnoid hemorrhage (SAH) often persists. Our previous study described factors that singly and combined in a formula correlate with permanent CSF diversion. We now aimed to determine whether the same parameters are applicable at an institution with different HCP management practice.
Methods:We reviewed records of 181 consecutive patients who presented with SAH and received an external ventricular drain (EVD) for acute HCP. After exclusion and inclusion criteria were met, 71 patients were analyzed. Data included admission Fisher and Hunt and Hess grades, aneurysm location, treatment modality, ventricle size, CSF cell counts and protein levels, length of stay (LOS) in the hospital, and the presence of craniectomy. Outcome measures were: (1) initial EVD challenge outcome; (2) shunting within 3 months; and (3) LOS.
Results:Shunting correlated with Hunt and Hess grade, CSF protein, and the presence of craniectomy. The formula derived in our previous study demonstrated a weaker correlation with initial EVD challenge failure. Several parameters that correlated with shunting in the previous study were instead associated with LOS in this study.
Conclusions:The decision to shunt depends on management choices in the context of a disease process that may improve over time. Based on the treatment strategy, the shunting rate may be lowered but LOS increased. Markers of disease severity in patients with HCP after SAH correlate with both shunt placement and LOS. This is the first study to directly evaluate the effect of different practice styles on the shunting rate. Differences in HCP management practices should inform the design of prospective studies.
Keywords: External ventricular drain, hydrocephalus, subarachnoid hemorrhage, shunt
INTRODUCTION
Acute hydrocephalus (HCP) after subarachnoid hemorrhage (SAH) is common, may cause neurological damage and may persist, resulting in the need for permanent cerebrospinal fluid (CSF) diversion with a shunt.[
MATERIALS AND METHODS
After receiving approval from the Institutional Review Board, we performed a retrospective chart review of 181 consecutive patients who presented with SAH and received an EVD for acute HCP. Eighty-four of the 181 patients were excluded due to nonaneurysmal SAH (trauma or arteriovenous malformation), death, or being under 18 years old at time of admission. Another 26 patients were excluded due to lack of EVD challenge (not performed due to clinical judgment, CSF leak, or unintentional removal of EVD by the patient) or lack of available data. Therefore, 71 patients were analyzed in our study.
Data collection
Patient demographic data, Fisher grade at admission, Hunt and Hess grade at admission, aneurysm location, and treatment modality (clip placement or coil embolization) were recorded. CT scans obtained at the time of admission and the onset of the EVD challenge were analyzed for the third ventricular diameter and bicaudate diameter by a single author who was blinded to patients’ outcomes. The red blood cell (RBC), white blood cell (WBC), and protein levels in the CSF as well as the serum sodium were recorded at the time of admission and the onset of the EVD challenge. The number of days in the neurological intensive care unit (NICU), the length of stay (LOS) in the hospital, and the presence of craniectomy were also recorded. The initial choice of parameters was based on prior publications, particularly the recent study performed at The University of Illinois at Chicago (UIC) by Chan et al.[
External ventricular drain challenge
In this retrospective review, we relied on the physician's decision at the time of the challenge. There is no standardized protocol, rather the decision is made by the attending neurointensivist with the overall philosophy at this institution of avoiding an unnecessary shunt as the overriding priority. Factors such as neurological status, severity of initial HCP, initial indications of EVD placement, extent and location of subarachnoid and/or intraventricular blood, volume of CSF drainage, and CSF analysis all influence the clinical decision. Typically, once patient stability was achieved and CSF drainage no longer had independent clinical advantage, the EVD was gradually elevated over several days, or clamped completely, while the patient was observed clinically, by ICP numbers and with CT scan. When a patient was able to tolerate the clamped EVD for 48 h, the catheter was removed. A “pass” score for initial challenge was defined as removal of the EVD following the challenge, while a “fail” was defined as the unclamping of the EVD and continued drainage.
Analysis
Three outcome measures were analyzed: (1) initial EVD challenge outcome; (2) placement of a ventriculoperitoneal (VP) shunt within 3 months of admission; and (3) LOS. In regards to these three measures, univariate analysis was performed to identify statistically significant (P < 0.05) predictive parameters. The significant parameters were combined into a multivariate regression analysis.
In addition, we sought to determine the level of correlation between the equation formulated in the prior study and our current data set. A “failure risk index” (FRI) was derived at the UIC study; FRI = –3.589 + 0.074 (TA) – 0.02 (TC) + 0.151 (HH) + 0.011 (CSFP) + 0.042 (BC) + 1.398 (sex) + 0.750 (circulation) where TA is the third ventricular diameter on admission in mm, TC is the third ventricular diameter at challenge in mm, HH is the Hunt and Hess grade, CSFP is the protein level in CSF at challenge in mg/dL, BC is the bicaudate diameter at challenge in mm, sex = 1 for female, 0 for male, and circulation = 1 for posterior location, 0 for anterior location. The data for the initial EVD challenges were used to calculate the correlation using linear regression. We hypothesized that the FRI derived from UIC data will help predict who passed or failed the EVD challenge when applied to a new patient population at our institution.
RESULTS
Population characteristics
The average age of the study group was 54.8 years. The group was made up of 54 (76.1%) females and 17 (23.9%) males. The aneurysm location distribution was 64 (90.1%) anterior and 7 (9.9%) posterior. Sixty-six (93.0%) of the patients underwent clipping of the aneurysm while 5 (7.0%) underwent coil embolization.
External ventricular drain challenge correlation with failure risk index
Shunt placement
Due to the local philosophy of optimizing attempts to achieve “shunt-free” survival, not all patients who failed initial EVD challenge were shunted in the current study; therefore, we performed a separate analysis of factors correlating with eventual shunt placement in the entire patient group regardless of the outcome of initial EVD challenge. Only three variables were found to be statistically significant in predicting shunt placement at UC [
There was no significant difference whether the patient passed or failed the initial EVD challenge based on number of days from admission until initial EVD challenge. Of the 32 patients that failed the initial EVD challenge, 69% (22/32) were challenged within 10 days of admission while the other 31% were challenged at 10 days or longer from admission.
Delayed shunting
At UC, 16 patients initially passed an EVD challenge but ended up getting a VP shunt later. Ten of these patients never left the hospital in the interval, and six were discharged but then returned for a VP shunt (range 1.7 month to 1 year after original admission). Fourteen patients were shunted within 90 days and were within the “shunting rate” as defined by us before the study. Two were shunted later (4 and 12 months from admission).
Length of stay
In a fashion similar to shunt placement itself, LOS is a consequence of factors such as severity of illness and treatment strategy, therefore we wanted to examine the factors that correlate with LOS [
These parameters closely resemble the parameters that correlated with shunting in the previous (UIC) study. We suspected that given greater LOS at UC and greater shunting rate at UIC, LOS partly replaced the shunting rate as an outcome variable. A multivariate regression equation was calculated based on the significant predictive variables (except days in NICU, which is not independent from total LOS). Our patient data were then applied to this equation to calculate a predicted LOS for each patient. These predicted values were plotted against the actual LOS for each patient and the correlation was calculated (r = 0.69). This correlation was found to be statistically significant (P < 0.0001). In other words, a similar set of predictors that strongly correlated with the shunting rate in the previous study instead correlated with LOS, suggesting a trade-off between LOS and shunting rate.
DISCUSSION
This is the first study to address the importance of institutional policies and treating physician choices as key factors in the patient outcome in the context of EVD management. Our data suggest that the increased LOS and lower shunting rate are a trade-off and also support the notion that HCP after SAH tends to improve with time. In a practice style that chooses early shunting and discharge, these parameters will correlate with higher shunting rate. If the managing physician chooses to minimize the shunting rate, the same parameters will now be predictive of greater LOS and be weaker predictors of the shunting rate. Hypothetically, a further increase in LOS will decrease the shunting rate further, although very prolonged EVD times can arguably increase the rate of infection.[
In this study we re-demonstrated objective parameters which correlate with the outcome of the initial EVD challenge and eventual shunting at UC: the Hunt and Hess grade on admission, protein level in CSF at challenge, and presence of craniectomy. These findings were in principle similar to the UIC study findings. The study was not intended as validation, but rather a comparison given varying practices. Indeed, there were important differences. Applying a formula identical to the one used by Chan et al.[
Although physicians practicing neurointensive care may have inferred an LOS–shunting rate trade-off, it was not clearly demonstrated. On the contrary, increased drainage duration has been associated with “shunt dependence”.[
The patient populations in both institutions were derived from the same pool, and had a similar severity and demographic composition. The greatest difference was the greater prevalence of open surgery in our sample compared to the Chan et al. study. Arguably this can affect HCP severity and shunting rate, but in both studies the choice of coiling vs. clipping was not one of the factors correlating with the shunting rate.
Previous studies have addressed risk factors for shunting after SAH. Most of them were not significantly different from what we found. They included higher Fisher grade,[
Our data suggest that automatic acceptance of the shunting rate as a quality parameter is not justified. Minimizing the shunting rate has benefits—patients do not receive hardware they may not need, and avoid an additional surgical procedure. On the other hand, aggressive reduction of the shunting rate risks missing patients who have HCP—delayed shunting was seen at UC, albeit only in 6/71 patients, but not at UIC with its much higher initial shunting rate. Arguably, some patients with delayed hydrocephalus after discharge may be missed and suffer serious neurological consequences. Early and more aggressive shunting may prevent these cases and allow for earlier discharge and rehabilitation.
Although the cost of health care is an important parameter in many clinical situations, this study was not designed to address this question. We believe that any such analysis should include the total cost—not only the hospital bill, but also the cost of rehabilitation, the patients’ outcome and return to function, etc.
Similar to surgical studies where equipoise must be explored before embarking on a multicenter study, we recommend a similar process for ICU-based clinical trials. In the case of a trial of shunting for those patients who had an EVD placed for acute HCP, a consensus or at least equipoise for a particular set of patients must be first achieved among participating physicians regarding what constitutes the requirement for shunting. Ultimately, for multicenter studies, we may need to uniformly define shunt “requirement” to normalize the way we guide families in the consent. This uniformity will be difficult to achieve until we have a better idea of what is better for the long-term outcome of the patient—earlier discharge and rehabilitation with a shunt, or longer hospital stay and avoidance of CSF shunting.
Our study was limited by its retrospective nature and inability to include information on patients’ co-morbidities. Despite this, our study provides important insights into current practices of management of patients with HCP after SAH and may eventually lead to better management and trial design.
CONCLUSIONS
This is the first study that addresses the importance of physician practice on the shunting rate and discharge statistics in patients with SAH. Based on our findings, any prospective study of shunting after EVD for acute HCP should acknowledge the variability of physician choice and opinion, similar to the principle of surgical equipoise advocated in prospective surgical studies. Otherwise, the applicability of any study to other practices will remain limited.
Specific parameters correlate with risk of shunting in patients with HCP after SAH.
They may vary among institutions based on the patient population and local physician practice.
We demonstrated a potential trade-off between LOS and shunting rate, where longer LOS may allow a lower shunting rate. Our study suggests that lowering shunting rate should not be an automatic goal of management of patients with HCP after SAH. The definition of shunt requirement after SAH is ambiguous and depends on management choices in the context of a disease process that may improve over time.
ACKNOWLEDGMENTS
The authors would like to thank Weihua Gao for her contribution in the statistical analysis of this study.
References
1. Arabi Y, Memish ZA, Balkhy HH, Francis C, Ferayan A, Al Shimemeri A. Ventriculostomy-associated infections: Incidence and risk factors. Am J Infect Control. 2005. 33: 137-43
2. Chan M, Alaraj A, Calderon M, Herrera SR, Gao W, Ruland S. Prediction of ventriculoperitoneal shunt dependency in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009. 110: 44-9
3. Dorai Z, Hynan LS, Kopitnik TA, Samson D. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003. 52: 763-
4. Germanwala AV, Huang J, Tamargo RJ. Hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010. 21: 263-70
5. Gruber A, Reinprecht A, Bavinzski G, Czech T, Richling B. Chronic shunt-dependent hydrocephalus after early surgical and early endovascular treatment of ruptured intracranial aneurysms. Neurosurgery. 1999. 44: 503-9
6. Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J. Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke. 1989. 20: 747-53
7. Hoefnagel D, Dammers R, Ter Laak-Poort MP, Avezaat CJ. Risk factors for infections related to external ventricular drainage. Acta Neurochir (Wien). 2008. 150: 209-14
8. Kasuya H, Shimizu T, Kagawa M. The effect of continuous drainage of cerebrospinal fluid in patients with subarachnoid hemorrhage: A retrospective analysis of 108 patients. Neurosurgery. 1991. 28: 56-9
9. Klopfenstein JD, Kim LJ, Feiz-Erfan I, Hott JS, Goslar P, Zabramski JM. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: A prospective randomized trial. J Neurosurg. 2004. 100: 225-9
10. Kwon JH, Sung SK, Song YJ, Choi HJ, Huh JT, Kim HD. Predisposing factors related to shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2008. 43: 177-81
11. Lin CL, Kwan AL, Howng SL. Acute hydrocephalus and chronic hydrocephalus with the need of postoperative shunting after aneurysmal subarachnoid hemorrhage. Kaohsiung J Med Sci. 1999. 15: 137-45
12. Little AS, Zabramski JM, Peterson M, Goslar PW, Wait SD, Albuquerque FC. Ventriculoperitoneal shunting after aneurysmal subarachnoid hemorrhage: Analysis of the indications, complications, and outcome with a focus on patients with borderline ventriculomegaly. Neurosurgery. 2008. 62: 618-27
13. Lyke KE, Obasanjo OO, Williams MA, O’Brien M, Chotani R, Perl TM. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis. 2001. 33: 2028-33
14. Mayhall CG, Archer NH, Lamb VA, Spadora AC, Baggett JW, Ward JD. Ventriculostomy-related infections.A prospective epidemiologic study. N Engl J Med. 1984. 310: 553-9
15. Mehta V, Holness RO, Connolly K, Walling S, Hall R. Acute hydrocephalus following aneurysmal subarachnoid hemorrhage. Can J Neurol Sci. 1996. 23: 40-5
16. Ohwaki K, Yano E, Nakagomi T, Tamura A. Relationship between shunt-dependent hydrocephalus after subarachnoid haemorrhage and duration of cerebrospinal fluid drainage. Br J Neurosurg. 2004. 18: 130-4
17. O’Kelly CJ, Kulkarni AV, Austin PC, Urbach D, Wallace MC. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: Incidence, predictors, and revision rates.Clinical article. J Neurosurg. 2009. 111: 1029-35
18. Pietila TA, Heimberger KC, Palleske H, Brock M. Influence of aneurysm location on the development of chronic hydrocephalus following SAH. Acta Neurochir (Wien). 1995. 137: 70-3
19. Rincon F, Gordon E, Starke RM, Buitrago MM, Fernandez A, Schmidt JM. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2010. 113: 774-80
20. Roitberg BZ, Khan N, Alp MS, Hersonskey T, Charbel FT, Ausman JI. Bedside external ventricular drain placement for the treatment of acute hydrocephalus. Br J Neurosurg. 2001. 15: 324-7
21. Schmieder K, Koch R, Lucke S, Harders A. Factors influencing shunt dependency after aneurysmal subarachnoid haemorrhage. Zentralbl Neurochir. 1999. 60: 133-40
22. Schultz M, Moore K, Foote AW. Bacterial ventriculitis and duration of ventriculostomy catheter insertion. J Neurosci Nurs. 1993. 25: 158-64
23. Sheehan JP, Polin RS, Sheehan JM, Baskaya MK, Kassell NF. Factors associated with hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1999. 45: 1120-7
24. Tapaninaho A, Hernesniemi J, Vapalahti M, Niskanen M, Kari A, Luukkonen M. Shunt-dependent hydrocephalus after subarachnoid haemorrhage and aneurysm surgery: Timing of surgery is not a risk factor. Acta Neurochir (Wien). 1993. 123: 118-24
25. Vale FL, Bradley EL, Fisher WS. The relationship of subarachnoid hemorrhage and the need for postoperative shunting. J Neurosurg. 1997. 86: 462-6
26. Widenka DC, Wolf S, Schurer L, Plev DV, Lumenta CB. Factors leading to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurol Neurochir Pol. 2000. 34: 56-60
27. Yoshioka H, Inagawa T, Tokuda Y, Inokuchi F. Chronic hydrocephalus in elderly patients following subarachnoid hemorrhage. Surg Neurol. 2000. 53: 119-24