www.surgicalneurologyint.com

Surgical Neurology International Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook.

SNI: Pain

Technical Notes

SNI. Open Access

Editor Jeff Brown Neurological Surgery, P.C.; Great Neck, NY, USA

Success of lateral cervical spinal cord stimulation for the treatment of chronic neuropathic refractory pain

Rafael Caiado-Vencio¹, Paulo Eduardo Albuquerque Zito Raffa², Bruna Marques Lopes³, Fernanda Lopes Rocha Cobucci⁴, Raphael Vinícius Gonzaga Vieira⁵, Paulo Roberto Franceschini⁶, Paulo Henrique Pires de Aguiar⁷

¹Department of Medicine, Pontifical Catholic University of Goiás, Goiânia, Goiás, ²Department of Medicine, Catanduva Medical School (FAMECA-UNIFIPA), Catanduva, ³Department of Medicine, Faculty of Medical Sciences, Santa Casa de São Paulo, ⁴Department of Medicine, Faculdade de Medicina do ABC, ⁵Department of Neurosurgery, Santa Paula Hospital, São Paulo, ⁶Department of Neurology and Neurosurgery, University of Caxias do Sul, Rio Grande do Sul, ⁷Department of Neurology, Pontifical Catholic University of São Paulo, São Paulo, Brazil.

E-mail: *Rafael Caiado-Vencio - rcvencio@gmail.com; Paulo Eduardo Albuquerque Zito Raffa - pauloeduardoazr@gmail.com; Bruna Marques Lopes - bruna.lopes@aluno.fcmsantacasasp.edu.br; Fernanda Lopes Rocha Cobucci - fernanda.cobucci@aluno. fmabc.net; Raphael Vinícius Gonzaga Vieira - reopgonzaga@gmail.com; Paulo Roberto Franceschini - prfrance@yahoo.com.br; Paulo Henrique Pires de Aguiar - phpaneurocir@gmail.com

***Corresponding author:** Rafael Caiado-Vencio, Department of Medicine, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil.

rcvencio@gmail.com

Received : 24 August 2021 Accepted : 25 January 2022 Published : 11 February 2022

DOI 10.25259/SNI_853_2021

Quick Response Code:

ABSTRACT

Background: Spinal cord stimulation (SCS) is traditionally performed by implanting surgical leads along the midline of the spinal cord, over the dorsal columns. Here, we present a patient who successfully underwent lateral cervical SCS to treat chronic refractory neuropathic pain.

Methods: A 46-year-old female, with a schwannoma involving the right axillary nerve, presented with a chronic refractory right upper extremity pain syndrome. The tumor was located between the fibers of the teres minor and the posterior deltoid, and measured 2.2 cm in diameter. After 8 months of analgesics, opioids, physiotherapy, and acupuncture, the patient underwent surgery; however, the tumor was unresectable (i.e., due to significant adjacent vascular/neural structures). Three months later, she had a midline C6-C7 laminectomy for placement of a right-sided epidural SCS lead (i.e., containing 16 electrode contacts).

Results: Within 4 days following this SCS procedure, the patient's pain completely resolved; at 10 postoperative months, she still remains pain free.

Conclusion: Lateral SCS at the C6-C7 level provided a safe and effective option for the relief of chronic neuropathic pain attributed to an unresectable schwannoma of the right axillary nerve in a 46-year-old female.

Keywords: Epidural lead, Lateral spinal cord, Neurostimulation, Schwannoma, Spinal cord stimulation

INTRODUCTION

Spinal cord stimulation (SCS) is widely used to treat chronic neuropathic pain.^[3,4] Here, we placed a lateral epidural C6-C7 SCS (i.e., containing 16 electrode contacts) in a patient with intractable neuropathic pain attributed to an unresectable right-sided schwannoma of the axillary nerve.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2022 Published by Scientific Scholar on behalf of Surgical Neurology International

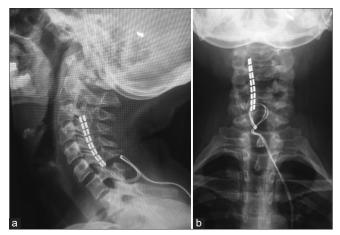
MATERIALS AND METHODS

A 46-year-old female with a schwannoma of the right axillary nerve (i.e., between the fibers of the teres minor and posterior deltoid muscles; it measured 2.2 cm in diameter) presented with chronic refractory pain in the upper right limb. The tumor was located in the right axillary nerve [Figure 1]. After 8 months of unsuccessful pain management therapy (i.e., analgesics, opioids, physiotherapy, and acupuncture), the patient underwent an attempted tumor resection; however, the lesion was unresectable (i.e., due to critical adjacent vascular/neural structures). Three months later, with 9/10 pain on the visual analog scale (VAS) and despite opioids, the patient successfully underwent a C6-C7 laminectomy for the placement of a right lateral SCS. The 16-electrode lead was then routinely connected to the internal pulse generator and placed into a left paramedian lumbar incision [Figures 2 and 3].

RESULTS

The postoperative MR confirmed the appropriate positioning of the surgical lead at the C6-C7 level in the right lateral epidural space [Figure 3]. Neurostimulation system was turned on 2 days after surgery; programming settings included a frequency of 130 Hz, pulse width of 100 microseconds, and amplitude of 1.8 mA. Four days postoperatively, the patient had complete resolution of pain

Figure 1: Magnetic resonance imaging showing a schwannoma of the right axillary nerve, between the fibers of the teres minor muscle and the posterior deltoid, with a measure of 2.2 cm in its widest axis (a, b: T1-weighted imaging; c, d: T2-weighted imaging).


(0/10 on the VAS) without any surgical complications. Ten months later, the patient still remained pain free.

DISCUSSION

SCS is traditionally performed by the insertion of a surgical lead along the posterior midline of the spinal cord, over the dorsal columns.^[4] Recently, the lateral placement of these devices in the cervical spine proved a promising alternative to the routine midline approach. Here, we placed the 16-electrode SCS lead to the right of the midline at the C6-C7 level to treat this 46-year-old female's chronic pain attributed to an axillary nerve schwannoma.

Efficacy of lateral spinal cord stimulation

Lateral SCS is an effective treatment for neuropathic pain. Although dorsal root ganglion (DRG) stimulation is also an effective treatment for these pain syndrome,^[2,4,5,7] we maintain that lateral SCS is safer (i.e., leads in DRG stimulation are implanted through percutaneous punctures

Figure 2: Cervical radiography showing surgical lead position in the lateral epidural space (a: lateral projection; b: anteroposterior projection).

Figure 3: Magnetic resonance imaging showing lead position in the lateral epidural space. The circle and arrow highlight the appropriate positioning of the surgical lead over the lateral spinal cord (a: sagittal plane; b: axial plane).

Table 1: Literature on lateral placement of epidural spinal cord stimulators.					
	Study design	Pain syndrome	No. of patients	Outcome	Time of follow-up
Chandrasekaran <i>et al</i> .	Case series	Upper limb amputation	4	Stimulation evoked somatosensory percepts that were perceived as emanating from the missing limb	29 days
Lynch <i>et al</i> .	Case report	Postherpetic neuralgia	1	50% pain reduction in 7 days and 20% reduction after 6 months, without pain medication	6 months
Garg <i>et al</i> .	Case report	Complex regional pain syndrome	1	> 70% pain reduction	1 week

with accompanying morbidities). In this case, the right-sided C6-C7 epidural lead was placed under direct visualization without perioperative morbidity. Additional studies have also confirmed the safety/efficacy of placing lateral epidural SCS electrodes to treat chronic pain syndromes [Table 1]. Chandrasekaran *et al.* reported somatosensory restoration after placing epidural lateral spinal cord stimulators in patients following upper limb amputations [Table 1].^[1] Lateral SCS epiradicular stimulation of the C2 DRG has also successfully managed cases of postherpetic neuralgia.^[8] Further, Garg *et al.* used lateral SCS to effectively target complex regional pain syndromes.^[6]

CONCLUSION

Lateral cervical epidural SCS proved to be an effective and safe treatment for managing chronic neuropathic pain in a 46-year-old female with an unresectable schwannoma of the right axillary nerve.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

Paulo Henrique Pires de Aguiar and Paulo Roberto Franceschini have received speaker honorarium from Medtronic. Other authors declare that they have no conflict of interest.

REFERENCES

- 1. Chandrasekaran S, Nanivadekar AC, McKernan G, Helm ER, Boninger ML, Collinger JL, *et al.* Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife 2020;9:e54349.
- 2. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, *et al.* Neuropathic pain. Nat Rev Dis Primers 2017;3:17002.
- Colombo EV, Mandelli C, Mortini P, Messina G, de Marco N, Donati R, *et al.* Epidural spinal cord stimulation for neuropathic pain: A neurosurgical multicentric Italian data collection and analysis. Acta Neurochir (Wien) 2015;157:711-20.
- 4. Deer TR, Levy RM, Kramer J, Poree L, Amirdelfan K, Grigsby E, *et al.* Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: A randomized comparative trial. Pain 2017;158:669-81.
- 5. Esposito MF, Malayil R, Hanes M, Deer T. Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med 2019;20 Suppl 1:S23-30.
- 6. Garg A, Danesh H. Neuromodulation of the cervical dorsal root ganglion for upper extremity complex regional pain syndrome-case report. Neuromodulation 2015;18:765-8.
- 7. Liem L, Russo M, Huygen FJ, van Buyten JP, Smet I, Verrills P, *et al.* One-year outcomes of spinal cord stimulation of the dorsal root ganglion in the treatment of chronic neuropathic pain. Neuromodulation 2015;18:41-8; discussion 48-9.
- Lynch PJ, McJunkin T, Eross E, Gooch S, Maloney J. Case report: Successful epiradicular peripheral nerve stimulation of the C2 dorsal root ganglion for postherpetic neuralgia. Neuromodulation 2011;14:58-61; discussion 61.

How to cite this article: Caiado-Vencio R, Raffa PE, Lopes BM, Cobucci FL, Vieira RV, Franceschini PR, *et al.* Success of lateral cervical spinal cord stimulation for the treatment of chronic neuropathic refractory pain. Surg Neurol Int 2022;13:52.