www.surgicalneurologyint.com

# Surgical Neurology International

Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook.

SNI: Spine

Editor Nancy E. Epstein, MD Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook

**Open Access** 

# Giant cell tumor of sacral vertebra in an adolescent without neurodeficit: A case report and review of the literature

Girish Bartakke, Mohit Muttha, Divya Tomer, Shubham Ashok Kadam

Department of Orthopaedics, Byramjee Jeejeebhoy Medical College and Sassoon General Hospital, Pune, Maharashtra, India.

E-mail: Girish Bartakke - girishbartakke@rediffmail.com; Mohit Muttha - mohit.muttha@gmail.com; \*Divya Tomer - tomerdivya@gmail.com; Shubham Ashok Kadam - shubham.kadam196@gmail.com



Case Report

\*Corresponding author: Divya Tomer, Department of Orthopaedics, Byramjee Jeejeebhoy Medical College and Sassoon General Hospital, Pune, Maharashtra, India.

ScientificScholar<sup>®</sup>

Publisher of Scientific Journals

Knowledge is power

tomerdivya@gmail.com

| Received :  | 04 March 2023 |
|-------------|---------------|
| Accepted :  | 22 March 2023 |
| Published : | 31 March 2023 |

DOI 10.25259/SNI\_207\_2023

Quick Response Code:



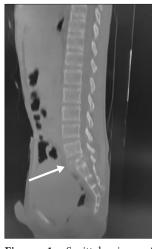
# ABSTRACT

Background: Giant cell tumors (GCTs) are locally aggressive benign primary bone tumors that rarely occur in the spine. Their treatment methods include denosumab, bisphosphonates, and/or different surgical techniques. Here, we present the successful treatment of a sacral GCT in a 13 years old.

Case Description: A 13-year-old male presented with back pain and paraparesis of 3-week duration. Radiological studies demonstrated an S1 lytic lesion. He underwent an excisional biopsy and anterior and posterior resection combined with a lumbopelvic fusion. One year later, there has been no tumor recurrence.

Conclusion: We successfully treated an S1 sacral GCT in a 13-year-old male utilizing a wide anteriorand posterior excision combined with a lumbopelvic fusion.

Keywords: Denosumab, Giant cell tumors, Primary bone tumors, Primary spinal tumors, Sacral tumors


## **INTRODUCTION**

Giant cell tumors (GCTs) are benign typically long bone lesions that rarely involve the spine. They often occur in patients between the ages of 20-45 years and just 1.7-8.2% involve the sacrum.<sup>[3,8]</sup> They are locally aggressive lesions with high recurrence rates. Although they are often treated with polymethylmethacrylate, cryosurgery, and phenolization supplemented with denosumab injections, and radiotherapy; these adjuvant therapies are not appropriate for spine (i.e., may damage major blood vessels, the spinal cord, and/or nerve roots).<sup>[1,6]</sup> Therefore, maximal primary excision is the optimal therapy.<sup>[6]</sup> Here, a 13-year-old male underwent successful excision of an S1 GCT.

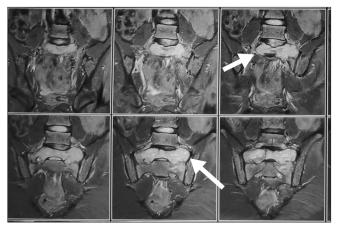
## CASE REPORT

A 13-year-old male presented with 3 weeks of progressive low back pain and paraparesis. The X-rays and computed tomography (CT) scan of the lumbosacral spine showed a lytic S1 sacral alar lesion [Figures 1 and 2]. The T1 magnetic resonance imaging images showed a hypointense lesion within the sacral ala and S1 body, while the T2 and short tau inversion recovery images revealed a hyperintense lesion with retropulsion into the spinal canal contributing to stenosis [Figure 3]. A percutaneous biopsy of the sacral ala confirmed the diagnosis of a GCT [Figure 4]. No embolization was performed as the CT-angiogram failed to demonstrate a distinct feeding vessel. The patient first underwent

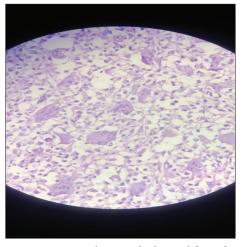
This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2023 Published by Scientific Scholar on behalf of Surgical Neurology International



**Figure 1:** Sagittal view of computed tomography scan showing lytic lesion (marked by arrow in the figure) in the body of S1 vertebra.




**Figure 2:** Coronal view of computed tomography scan showing expansile lesion in sacral ala (marked by arrow in the figure) and S1 vertebral body.


an anterior transperitoneal tumor resection [Figure 5]; this was followed by a secondary posterior lumbopelvic fusion [Figure 6]. Postoperatively, the patient had no new postoperative neurological deficit. Three months later, he was pain-free and able to walk without assistance. After 6 postoperative months, the CT scan showed no tumor recurrence; at 1 year postoperatively, he remains asymptomatic and tumor free.

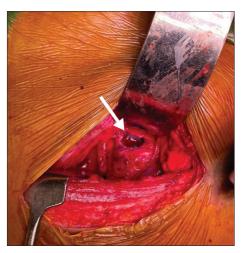
### DISCUSSION

GCTs are typically lytic vertebral lesions. The main differential diagnoses include hyperparathyroidism,



**Figure 3:** T2 weighted sagittal magnetic resonance imaging scan showing hyperintense lesion in S1 vertebral body expanding into the ala of sacrum (marked with arrow in figure).




**Figure 4:** Biopsy photograph obtained from the patient showing features of giant cell tumor.

aneurysmal bone cyst, osteoblastoma, and tuberculosis. Pathologically, they are identified based on their multinucleated osteoclasts in a spindle cell matrix (i.e. should be confirmed by biopsy and/or surgical resection).<sup>[2,10]</sup> Intralesional resection is the treatment of choice but *en bloc* resection for most sacral lesions is problematic. In a study by Martin and McCarthy.,<sup>[8]</sup> 10 cases of sacral GCT, preoperative arterial embolization,and intralesional surgical resection were performed in six patients; in two cases, the tumor recurred, while for the other two patients, GCTs were cured by *en bloc* resection [Table 1]. They reported overall recurrence rates range from 22% for sacral GCT to 31% for other levels.

#### Treatment after GCT surgery with adjunctive denosumab

Several studies demonstrated the efficacy of denosumab utilized following GCT spinal surgery<sup>[4,5,7]</sup> Bukata *et al.*<sup>[4]</sup> showed that in 104 patients who stopped denosumab, 34%

| Table 1: Treatm                   | nent methods and          | Table 1: Treatment methods and outcome of recent studies on GCT in the spine.         | nt studies on GC1                                                                                         | Γ in the spine.                                                                                   |                                                           |                                                                                                                                                                    |                                                                                           |                                                              |                                                                                           |
|-----------------------------------|---------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                   | Present<br>study          | Balke <i>et al.</i> ,<br>2012 <sup>[1]</sup>                                          | Boriani <i>et al.</i> ,<br>2012 <sup>[3]</sup>                                                            | Bhojraj <i>et al.</i> ,<br>2007 <sup>[2]</sup>                                                    | Bukata <i>et al.</i> ,<br>2021 <sup>[4]</sup>             | Chawla <i>et al.</i> ,<br>2013 <sup>[5]</sup>                                                                                                                      | Demura <i>et al.</i><br>2012 <sup>[6]</sup>                                               | Lucasti <i>et al.</i> ,<br>2021 <sup>[7]</sup>               | Martin and<br>McCarthy,<br>2010 <sup>[8]</sup>                                            |
| Number of<br>patients/age/<br>sex | 13 yr/Male                | 19 cases, 13<br>females, 6<br>males, mean<br>age 29 years<br>(18–61 years)            | 28 females, 21<br>males<br>11–61 years                                                                    | six cases (three<br>males and three<br>females)<br>22–39 years                                    | 86 females, 46<br>males,<br>median age 32<br>(13–83)      | 281, cases, 164<br>females, and<br>117 males, age<br>24–45                                                                                                         | 36 yr, Male                                                                               | 21 yr, Female                                                | 23 cases, (13<br>females and 10<br>males), aged<br>13–64 years                            |
| Site of tumor                     | S1                        | Six in the<br>mobile spine,<br>13 sacrum                                              | Six cervical,<br>21 thoracic,<br>22 lumbar                                                                | One cervical,<br>five thoracic                                                                    | 81 sacral, 23<br>thoracic, 14<br>cervical, 14 lumbar      | 27 in mobile<br>spine, 48<br>sacrum, 206<br>other bones                                                                                                            | T12                                                                                       | T8                                                           | 13 in the mobile<br>spine, 10 sacrum                                                      |
| Treatment                         | Intralesional<br>excision | Surgical<br>intralesional<br>resection,<br>3 sacral<br>GCT given<br>radiotherapy      | Surgical<br>(anterior+<br>posterior)                                                                      | Surgical<br>anterior (=4),<br>Posterior (=2),<br>combined (=3),<br>four received<br>postoperative | Denosumab (27-69<br>doses), surgery                       | Denosumab<br>for all, surgery<br>in 16 cases                                                                                                                       | Anterior+<br>posterior wide<br>excision with<br>chest wall<br>reconstruction<br>with ribs | Surgical<br>resection,<br>T4-T12<br>fusion, and<br>denosumab | Preoperative<br>embolization<br>and Surgical<br>resection                                 |
| Recurrence                        | None at 1<br>year         | 7 at median 51<br>months f/u                                                          | 11 (22%) at 5<br>years f/u                                                                                | 1 at 5 years, 1 at<br>1 year                                                                      | 5 patients at 5<br>years                                  | Six cases<br>had disease<br>progression<br>at 9-month<br>follow-up phase                                                                                           | None, at 7<br>years                                                                       | Occurred at<br>14 months,<br>treated<br>surgically           | Two in the sacrum, four in the mobile spine                                               |
| Complications                     | None                      | One death<br>due to disease<br>progression,<br>6 developed<br>neurological<br>deficit | Two deaths<br>from the<br>progression<br>of the disease,<br>one death from<br>complications<br>of surgery | None                                                                                              | Disease<br>progression-6,<br>Adverse events-9,<br>death 1 | <ul> <li>z of this triat</li> <li>Three</li> <li>osteonecrosis</li> <li>of the jaw, 15</li> <li>hypocalcemia,</li> <li>other Adverse</li> <li>events-25</li> </ul> | None                                                                                      | None                                                         | Chronic pain<br>and neurological<br>deficits in 18<br>patients at the<br>end of 64 months |
| GCT: Giant cell tumor, yr: Year   | umor, yr: Year            |                                                                                       |                                                                                                           |                                                                                                   |                                                           |                                                                                                                                                                    |                                                                                           |                                                              |                                                                                           |



**Figure 5:** Intra operative picture showing Curetted S1 body lesion (marked by arrow in the figure) by anterior approach.



**Figure 6:** Post-operative radiograph done at 1 month after lumbopelvic fixation.

had disease progression or recurrence; longer durations of treatment resulted in an 8% incidence of osteonecrosis of the jaw and a 49% frequency of persistent back pain.<sup>[4]</sup>

#### Radiation therapy (RT) following surgery for GCT

Radiotherapy following intralesional GCT resection helps to prevent tumor recurrence. Bhojraj *et al.* Observed no instances of sarcoma or other side effects when using radiation to treat GCT (i.e., <50 Gy).<sup>[2]</sup> However, two other studies, utilizing higher doses of RT to treat GCT observed a 17–27% incidence of the sarcomatous spine, sacral, and pelvis changes.<sup>[9]</sup> However, as these tumors are typically considered benign, RT is typically recommended only for the palliative treatment of large unresectable tumors or postoperative recurrent lesions.<sup>[6]</sup>

#### Local recurrence rates of spinal/sacral GCT

Boriani *et al.*<sup>[3]</sup> found that relapse rates for spinal/sacral GCT were higher in patients under the age of 18 (39%) versus only 13% for those >31 years of age. The thoracic spine accounted for 14%, the lumbar spine for 22%, and the cervical spine for 50% of cases. They also determined a lower recurrence rate following total *en bloc* excision (i.e., Enneking Stage III tumors) versus Intralesional resections (Enneking Stage II tumors). Other authors also recommended that patients undergo radiological surveillance every 3 months for 2 years after surgery to look for recurrent GCT tumors.<sup>[8]</sup>

### CONCLUSION

A 13-year-old male diagnosed with a GCT S1 lytic lesion successfully underwent circumferential tumor resection with lumbopelvic fixation.

#### Declaration of patient consent

Patient's consent not required as patient's identity is not disclosed or compromised.

#### Financial support and sponsorship

Nil.

#### **Conflicts of interest**

There are no conflicts of interest.

#### REFERENCES

- Balke M, Henrichs MP, Gosheger G, Ahrens H, Streitbuerger A, Koehler M, *et al.* Giant cell tumors of the axial skeleton. Sarcoma 2012;2012:410973.
- Bhojraj SY, Nene A, Mohite S, Varma R. Giant cell tumor of the spine: A review of 9 surgical interventions in 6 cases. Indian J Orthop 2007;41:146-50.
- Boriani S, Bandiera S, Casadei R, Boriani L, Donthineni R, Gasbarrini A, *et al.* Giant cell tumor of the mobile spine: A review of 49 cases. Spine (Phila Pa 1976) 2012;37:E37-45.
- 4. Bukata SV, Blay JY, Rutkowski P, Skubitz K, Henshaw R, Seeger L, *et al.* Denosumab treatment for giant cell tumor of the spine including the sacrum. Spine (Phila Pa 1976) 2021;46:277-84.
- 5. Chawla S, Henshaw R, Seeger L, Choy E, Blay JY, Ferrari S, *et al.* Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: Interim analysis of an open-label, parallel-group, Phase 2 study. Lancet Oncol 2013;14:901-8.
- 6. Demura S, Kawahara N, Murakami H, Akamaru T, Kato S, Oda M, *et al.* Giant cell tumor expanded into the thoracic cavity with spinal involvement. Orthopedics 2012;35:e453-6.
- 7. Lucasti C, Patel D, Hawayek B, Maraschiello M, Kowalski J.

Giant cell tumor of the thoracic spine causing acute paraplegia-a case report. J Spine Surg 2021;7:208-13.

- Martin C, McCarthy EF. Giant cell tumor of the sacrum and spine: Series of 23 cases and a review of the literature. Iowa Orthop J 2010;30:69-75.
- 9. Turcotte RE. Giant cell tumor of bone. Orthop Clin North Am 2006;37:35-51.
- 10. Werner M. Giant cell tumour of bone: Morphological, biological and histogenetical aspects. Int Orthop 2006;30:484-9.

**How to cite this article:** Bartakke G, Muttha M, Tomer D, Kadam SA. Giant cell tumor of sacral vertebra in an adolescent without neurodeficit: A case report and review of the literature. Surg Neurol Int 2023;14:121.

#### Disclaimer

The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Journal or its management. The information contained in this article should not be considered to be medical advice; patients should consult their own physicians for advice as to their specific medical needs.