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INTRODUCTION

A sexual dimorphism exists in glioblastoma (GBM) incidence, with men accounting for 
1.6 times more diagnoses than women.[25] is discrepancy is not fully understood but highlights 
sex hormones as potential effectors of GBM development. Data supports that sex hormones 

ABSTRACT
Background: Glioblastoma (GBM) incidence is higher in males, suggesting sex hormones may influence GBM 
tumorigenesis. Patients with GBM and altered sex hormone states could offer insight into a relationship between 
the two. Most GBMs arise sporadically and heritable genetic influence on GBM development is poorly understood, 
but reports describing familial GBM suggest genetic predispositions exist. However, no existing reports examine 
GBM development in context of both supraphysiologic sex hormone states and familial predisposition for GBM. 
We present a case of isocitrate dehydrogenase (IDH)-wild type GBM in a young pregnant female with polycystic 
ovary syndrome (PCOS), history of in vitro fertilization (IVF), and significant family history of GBM and further 
discuss how unique sex hormone states and genetics may affect GBM development or progression.

Case Description: A 35-year-old pregnant female with PCOS and recent history of IVF treatment and frozen 
embryo transfer presented with seizure and headache. Imaging revealed a right frontal brain mass. Molecular 
and histopathological analysis of the resected tumor supported a diagnosis of IDH-wild type GBM. e patient’s 
family medical history was significant for GBM. Current literature indicates testosterone promotes GBM cell 
proliferation, while estrogen and progesterone effects vary with receptor subtype and hormone concentration, 
respectively.

Conclusion: Sex hormones and genetics likely exert influence on GBM development and progression that may 
compound with concurrence. Here, we describe a unique case of GBM in a young pregnant patient with a family 
history of glioma and atypical sex hormone exposure due to endocrine disorder and pregnancy assisted by 
exogenous IVF hormone administration.
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influence cancer cell biology. For example, testosterone 
promotes cancer cell development, while the effects of 
estrogen are largely dependent on type and level of estrogen 
receptor (ER) expression.[12,31] High doses of progesterone 
hinder GBM growth, while low doses may promote GBM 
growth.[3] Still, the full effect of each individual hormonal 
on GBM remains to be fully elucidated and there remains a 
particular lack of conclusive literature regarding GBM in the 
context of pathologic and supraphysiologic hormonal states, 
such as polycystic ovarian syndrome (PCOS) and in vitro 
fertilization (IVF) treatment protocols.

Genetic predisposition to GBM is rare and largely occurs 
in association with syndromes such as Li-Fraumeni and 
neurofibromatosis.[30,41] In a smaller subset of cases, there 
are apparent genetic effects on GBM incidence in the 
absence of these syndromes.[5] We present a case of GBM in 
a young pregnant woman with a family history of GBM and 
documented history of polycystic ovary syndrome (PCOS) 
and IVF treatment.

CASE DESCRIPTION

A 35-year-old pregnant female with past medical history of 
multiple miscarriages, PCOS, and IVF treatment presented 
to the emergency department following a generalized tonic-
clonic seizure. On presentation, the patient was mildly post-
ictal and reported headache and feeling lightheaded. e 
patient underwent frozen embryo transfer 9  weeks before 
presentation following a routine hormone protocol of daily 
oral and transdermal estradiol (E2), progesterone injections, 
and leuprorelin. At presentation, the patient remained 
on progesterone and enoxaparin injections in support of 
her pregnancy. She had no personal history of neurologic 
dysfunction, but family history was significant for GBM in 
her father and an unspecified brain tumor in a paternal aunt.

Computed tomography of the head demonstrated a 4  cm 
mass with significant vasogenic edema and minor mass effect 
but no midline herniation. e patient’s obstetrician was 
informed and agreed to transfer to neurosurgery; a maternal 
fetal medicine consult approved starting the patient on 
levetiracetam. Subsequent noncontrast magnetic resonance 
imaging corroborated a 4.3 × 2.8 cm right frontal lobe mass 
with associated vasogenic edema, mass effect, and probable 
involvement of the right side of the corpus callosum without 
crossing the midline.

e patient underwent a right frontal craniotomy with 
maximal surgical debulking of the mass. She was discharged 
4 days later and started Stupp protocol 36 days later following 
a dilation and curettage procedure for pregnancy termination. 
Final tumor pathology confirmed diagnosis of IDH-wild 
type GBM with genomic alterations including: disruption of 
SOX2, gain of function in estimated glomerular filtration rate 

(EGFR), homozygous loss of function in cyclin-dependent 
kinase inhibitor 2A and cyclin-dependent kinase inhibitor 2B 
(CDKN2B), and loss of function of phosphate and TENsin 
homolog deleted on chromosome 10 (PTEN).

DISCUSSION

is case provides a unique presentation of GBM in which 
several novel theories regarding GBM risk factors are 
represented. Here, we discuss the impact of sex hormones – 
through PCOS, pregnancy, and IVF – and heritable genetic 
risk on the development and growth of GBM. To the best of 
our knowledge, no reports of glioma in a pregnant woman 
following IVF for PCOS-related infertility exist in the current 
literature. is patient’s family history of GBM makes this 
case particularly distinct.

Androgens

Testosterone and its metabolite dihydrotestosterone are well 
documented promoters of carcinogenesis and literature 
suggests this pro-cancer effect also applies to GBM. An 
initial animal study in 1970 showed that castrated rats had 
less induction of gliomas than non-castrated rats, implying 
androgen involvement in gliomagenesis.[14] More recently, 
Rodriguez-Lozano et al. found that human GBM cell lines 
exposed to high levels of testosterone increased proliferation, 
invasion, and migration [Figure  1]. Furthermore, they 
demonstrated the effects of testosterone on GBM are 
mediated by the androgen receptor (AR), as the proliferative 
effects of testosterone halted with the addition of an AR 
antagonist.[31] GBM may also upregulate ARs compared 
with the surrounding brain tissue. Yu et al. propose that 
AR signaling blocks downstream transforming growth 
factor beta (TGFβ) signaling, attenuating the pro-apoptotic 
effect exerted by TGFβ on male-patient derived GBM cells 
[Table  1].[45] ese findings suggest that the discrepancy 
between testosterone levels in males and females could partly 
explain the increased incidence of GBM in men. Considering 
that young female patients account for a minority of GBM 
cases and PCOS is characterized – at least partly – by 
increased androgen secretion,[32] this case poses an interesting 
question of whether hyperandrogenemic conditions could be 
related to GBM development in certain patient populations.

Estrogens

A closer look at GBM incidence by age group reveals that the 
characteristic sexual dimorphism is greatest at the age-range of 
menarche, remains constant through adulthood, and decreases 
following menopause.[22] is timeline closely resembles the rise 
and fall of E2 levels throughout the female lifetime, suggesting 
a relationship between E2 and decreased GBM incidence in 
women. 2-Methoxy E2, a metabolite of E2, inhibited normal 
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and neoplastic glial cell proliferation and induced apoptosis of 
human GBM cells in vitro.[20] In contrast, E2 treatment of GBM 
cell lines induced proliferation by increasing genes related to 
mitochondrial fitness.[9] is inconsistency of findings prompts 
deeper exploration of E2’s mechanistic intricacies.

A possible explanation for the conflicting results is that the 
ER type modulates the downstream effects of E2. Several 

studies demonstrate that estrogen’s effects on GBM depend 
largely on which ER subtype, estrogen receptors alpha (ERα) 
or Estrogen receptor beta (ERβ), is targeted. Hernandez-Vega 
et al. found increased migration, invasion, and epithelial-
mesenchymal transition markers in human-derived GBM 
cell lines exposed to E2, suggesting that E2 may promote 
GBM invasion. ey further demonstrated that E2 promotes 
GBM invasion through ERα, but not ERΒERΒ.[12] Instead, 
there is significant evidence that ERΒ is protective against 
GBM development and progression. ERΒ expression 
decreases with increasing astrocytoma grade.[6] Sareddy 
et al. demonstrated that ERΒ knockout in human derived 
GBM cell lines increased the stemness of glioma stem cells 
(GSC) and ERΒ agonists reduced GSC viability. ey further 
showed that ERΒ receptor overexpression and ERΒ agonists 
prolong survival in GBM mouse models.[35] Furthermore, 
ERΒ activation may additionally sensitize GBM cells to the 
chemotherapeutic agent temozolomide (TMZ), as treatment 
with ERΒ agonists increased the survival time of tumor-
bearing mice receiving TMZ.[46] Given these results, ERΒ 
agonists hold promise as a potential therapeutic strategy for 
GBM.[34]

ese studies suggest a protective role of ERΒ, but it is 
worth noting that ERΒ has five isoforms (ERΒ1–ERΒ5), 

Figure 1: Summary of demonstrated hormone effects on glioblastoma.
EMT: Epithelial-mesenchymal transition, PI3K: Phosphatidylinositol 3-kinase, AKT: Protein kinase B, 
mTOR: Mammalian target of rapamycin, ADP: Adenosine diphosphate, ATP: Adenosine triphosphate, 
TCA cycle: Tricarboxylic acid cycle, CytC: Cytochrome C

Table 1: Summary of androgen and estrogen receptor effects.

Receptor type Receptor effects and characteristics

Androgen 
receptors

↑ Expression in GBM
↓  Downstream effects of TGFβ, decreasing 

male GBM cell apoptosis
Estrogen 
receptor α

↑ GBM invasion

Estrogen 
receptor β

↓ Stemness and viability of glioma stem cells
↑ Mouse survival time in GBM
↓ Expression with increased astrocytoma grade

Estrogen 
receptor β1

Only estrogen receptor β-isoform with 
demonstrated tumor suppressive function in 
GBM

Estrogen 
receptor β5

↑ Expression with increased glioma grade

GBM: Glioblastoma, TGFβ: Transforming growth factor beta
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each with documented distinct effects on different cancers. 
For example, ERΒ5 expression is correlated with better 
survival in breast cancer and non-small-cell lung cancer yet 
associated with poor prognosis in prostate cancer.[19,21,38] In 
the case of gliomas, ERΒ5 expression increases as glioma 
grade increases and influences mTOR signaling, cell growth, 
motility structures, and foci formation. Liu et al. found that 
ERΒ1 and ERΒ5 are the isoforms most expressed in human 
GBM, while ERΒ2 and ERΒ4 are present in low levels. Of 
these, only ERΒ1 demonstrated tumor suppressive function 
in GBM.[21] us, the proposed protective effects of ERΒ 
are likely attributable to the ERΒ1 isoform. e effects of 
estrogen and AR types are summarized in Table 1.

Although increased androgens are a hallmark of PCOS, there 
may also be disruptions of E2 and ERs. Specifically, ERα 
knockout mouse models are associated with the development 
of ovarian cysts and anovulation that mimics PCOS. ERΒ 
knockouts also experiencing decreased ovulation.[11,17,37] 
e relationship between PCOS and GBM remains largely 
undissected in the current literature, but it is possible that PCOS-
associated dysregulation of ER signaling diminished the ability 
of E2 to exert any protective effects against GBM occurrence 
in this particular patient. Without specification of which ERs 
are present within a given tumor, it is difficult to predict how 
estrogen levels would affect GBM growth or development.

Progesterone

Evidence suggests that the effects of progesterone on GBM are 
concentration dependent. For example, Atif et al. found that 
high-dose progesterone decreased GBM growth, attenuated 
glycolysis, induced cellular senescence, inhibited the P13K/
Akt/mTOR pathway, and improved survival, while lower dose 
progesterone had no impact on tumor size.[3] Increasing dose 
of progesterone also inhibited growth and downregulated 
tumor supportive mitochondrial proteins (mitochondrial 
ornithine aminotransferase and 60kDa heat shock protein) in 
GBM cell lines.[1] In contrast, Atif et al. found that low-dose 
progesterone (0.1, 1, and 5 μM) induced GBM proliferation 
that was blocked by a progesterone receptor (PR) antagonist.
[4] Progesterone is additionally documented to attenuated the 
anti-tumor immune response through progesterone-induced 
blocking factor[10] and to activate cSrc through intracellular 
PR, thereby driving GBM progression.[8] PR antagonists also 
halted progesterone-induced GBM migration and invasion, 
further suggesting that hormonally targeting GBM may 
be a viable therapeutic strategy.[29] With such dichotomy of 
progesterone effects on GBM; further, research is necessary 
to establish upper and lower limits for the concentrations at 
which a GBM-blocking or promoting effect of progesterone 
can be consistently predicted. Such findings could elucidate 
any influence that this patient’s progesterone treatment may 
have had on GBM development.

Pregnancy

One of the many changes that occur during gestation is a 
steady increase in E2 and progesterone, both of which peak 
in concentration during the third trimester.[39] Progesterone 
levels reach a lifetime high in the third trimester, but it is 
unclear whether these concentrations are ideal for mimicking 
the inhibition of GBM growth described in the preclinical 
literature.[1,3] An increased glioma growth rate and accelerated 
clinical deterioration is associated with pregnancy.[27,28] If the 
net effect of female hormones is indeed protective against 
GBM growth and development, this pregnancy-associated 
glioma growth may result from the many other growth 
factors released during pregnancy. For example, angiogenic 
factors such as vascular endothelial growth factor (VEGF) 
and placental growth factor support GBM growth and are 
increased during gestation.[16,24] Monoclonal antibodies 
against VEGF are associated with prolonged progression-free 
survival in GBM but is not recommended in pregnancy.[18]

Teratogenicity of cancer therapies is a significant barrier to 
GBM care during pregnancy, as surgery, anesthesia, radiation, 
and chemotherapy can all pose at least some level of risk to 
the fetus. e ethical dilemmas that arise when treating a 
pregnant patient with GBM are especially difficult to navigate 
given that the average survival time after GBM diagnosis 
exceeds the length of gestation by only a few months, often 
eliminating the option to postpone cancer treatment until 
after delivery.[43] In this case, the patient elected to terminate 
the pregnancy for these reasons.

Non-hormonal factors

While gonadal steroid hormones likely contribute to the 
sexual disparity in GBM incidence, other sex-specific 
differences in gene expression and immune function may 
also play a role. Sex differences in GBM incidence vary by cell 
type, with mesenchymal GBM cells displaying a larger sexual 
dimorphism than neural, proneural, or classical subsets of 
GBM. Greater inactivation of the tumor suppressor RB in 
males may be responsible for the augmented tumorigenesis 
and growth of mesenchymal GBM in male mouse models 
compared with their female counterparts.[40] Furthermore, 
females tend to respond better to standard therapy, 
demonstrating steadier declines in GBM growth velocity 
after TMZ treatment, and ultimately exhibiting longer 
survival times.[44] Yang et al. additionally demonstrated 
that net infiltration rates predicted survival time in females 
but not in males, and further identified a female-specific 
association between isocitrate dehydrogenase 1 (IDH1) 
mutation and longer survival.[44] In contrast, Schiffgens 
et  al. found that IDH1 mutations predicted longer survival 
in males only.[36,44] Other identified predictors of survival 
included an associated between high expression of Wnt 
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receptor Frizzled-7 and poor survival in males, and an 
association between a hypermethylated MGMT promotor 
and longer survival in females.[36] Sex differences also 
exist in the expression of myeloid-derived suppressor cells 
(MDSC), which block the antitumor immune response 
and are increased in GBM. Monocytic MDSCs are elevated 
in male mouse models, while granulocytic MDSCs are 
expressed more abundantly in female mouse models. Bayik 
et al. found that chemotherapeutic targeting of monocytic 
MDSCs extended survival in male mice, while IL1 pathway 
inhibitors that inhibit granulocytic MDSC function extend 
survival in female mice.[7] Given the differential expression of 
potential therapeutic targets, increase consideration of sex-
specific differences in therapeutic development may result in 
improved GBM survival in the future.

Heritable factors

Inheritance of GBM is uncommon and often associated 
with Li Fraumeni syndrome, neurofibromatosis, or Turcot 
syndrome.[13] However, reports exist of familial GBM in 
the absence of these syndromes.[2,23,33,42] A meta-analysis of 
three genome-wide association studies (GWAS) estimated a 
25% and 26% heritability for glioma and GBM, respectively; 
yet, currently only an estimated 6% of genetic variance is 
explained by GWAS-identified glioma risk loci.[15] As such, a 
very small fraction of GBM heritability is understood. Genes 
associated with GBM in both males and females include 
those for solute carrier family 6, member 18, telomerase 
reverse transcriptase, CDKN2B, and strathmin 3.[26] Notable 
familial GBM cases include one reported by Sander et al., 
in which a brother and sister each acquired IDH-wild type 
multifocal GBM in the left parietotemporal lobe at the age 
of 63.[33] Mukherjee et al. sequenced DNA from GBMs of 
two siblings and their father with GBM diagnosed at ages 
19, 6, and 38, respectively, to find they all shared mutations 
of platelet derived growth factor receptor-alpha and proto-
oncogene H-Ras, and the two siblings shared a mutation 
of the SWItch/sucrose non-fermentable-related matrix-
associated actin-dependent regulator of chromatin subfamily 
B member 1 (SMARCB1) gene. ey suggest that SMARCB1 
predisposes to earlier GBM development.[23]

e genomic alterations identified in this case of GBM 
included disruption of SOX2, gain of function in EGFR, 
homozygous loss of function in CDKN2A and CDKN2B, 
and loss of function of PTEN. is analysis is notably limited 
by a lack of genetic characterization of the tumors from 
both the patient’s father and paternal aunt. More reports 
detailing familial occurrences of GBM with DNA sequencing 
are needed to further elucidate the contributions of non-
syndromic genetic heritability in GBM as genetic findings 
thus far are diverse and of limited relevance to this small 
subset of GBM.

CONCLUSION

is case describes a unique presentation of GBM in a 
young female patient with PCOS, history of IVF treatment, 
pregnancy, and significant family history of GBM and brain 
tumor. To the best of our knowledge, there are no previous 
reports of GBM presenting within this context. e existing 
literature poorly characterizes the relationship between these 
factors and further research is necessary to improve GBM 
survival and elucidate associations among GBM, genetics, 
biological sex differences, pathologic and supraphysiologic 
hormonal states, and pregnancy.
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