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INTRODUCTION

Background and significance of TBI-related neuroprotection

Traumatic brain injury (TBI) is regarded as one of the primary causes of hospitalization, 
disability, and death in people of all ages.[14] e most common causes of TBI are falls, motor 
vehicle accidents, and fights.[36]

ABSTRACT
Background: is review delves into clinical strategies aimed at addressing the complexities of traumatic brain 
injury (TBI), specifically focusing on pharmaceutical interventions and stem cell therapies as potential avenues 
for enhancing TBI outcomes.

Methods: A thorough review of clinical strategies for TBI management, encompassing pharmaceutical and non-
pharmaceutical interventions, was performed. PubMed, MEDLINE and clinical trial databases were searched to 
identify relevant studies and clinical trials. Inclusion criteria consisted of studies involving pharmaceutical agents 
and other clinical approaches (i.e., stem cell therapies) targeting neuroinflammation, excitotoxicity, oxidative 
stress, and neurodegeneration in TBI. Data from clinical trials and ongoing research initiatives were analyzed to 
assess the current status and potential of these clinical approaches.

Results: Many trials have been conducted to face the challenge that is TBI. ese interventions are designed to 
target critical aspects of secondary brain injury, encompassing neuroinflammation, excitotoxicity, oxidative stress, 
and neurodegeneration. Despite this, there is no panacea or definitive remedy for this condition. Combining 
therapies in a patient-tailored approach seems to be our best chance to improve these patients’ outcomes, but 
systematic protocols are needed.

Conclusion: Clinical strategies represent dynamic and continually evolving pathways in TBI management. is 
review provides an extensive overview of the existing landscape of clinical approaches and promising new studies 
and outlines their influence on patient outcomes. By highlighting challenges and presenting opportunities, it 
contributes to the ongoing mission to advance clinical care for individuals impacted by TBI.
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e mechanical damage is followed by local inflammation, 
predominantly led by microglia.[38] ere are two types of 
TBI-related injury: in the primary injury, the neural tissue 
is mechanically harmed, causing hemorrhages, contusions, 
cerebral blood flow (CBF) compromise,blood–brain barrier 
(BBB) disruption, and metabolic abnormalities.[61] Within 
minutes after the initial trauma, we can observe a series of 
complex processes. Importantly, these processes continue 
over long lengths of time after the original damage, from 
days to months and, in some circumstances, even years. In 
the end, neuroinflammation and neurodegeneration bring 
neurological deficits.[27,81] e existence of these persisting 
secondary damage processes [Figure 1], though, also extends 
the therapeutic window.[30,45]

e rationale behind early intervention is to halt or 
attenuate these damaging processes before they escalate 
further. By doing so, early interventions have the potential 
to yield greater benefits in terms of preserving neural 
tissue, minimizing neuroinflammation, and averting 
excessive neuronal cell death. While the benefits of early 
interventions are well-established, it is important to note 
that the therapeutic window does not abruptly close as time 
progresses. Some interventions can still be efficacious when 
introduced later in the recovery process. is is particularly 
relevant in cases where the secondary injury processes 
persist over an extended period. Late-stage interventions 
may focus on facilitating neural repair, enhancing cognitive 
rehabilitation, or addressing chronic neurological deficits.

TBI’s social and financial implications are presently attracting 
an increasing amount of attention.[35,89] Recent statistics show 
that there were almost 27 million new TBI diagnoses in 2016 
and that over the previous 26 years, the frequency of TBI has 
grown by 8.4%.[35] Despite that, due to a lack of knowledge 
regarding the diverse nature and complexity of TBI, years 
of extensive study have so far had a modest influence on 
therapeutic results.

Overview of TBI epidemiology and impact on the brain

Age and gender both affect the incidence of TBI. It can 
occur in children as young as 0  years old, teenagers as old 
as 15–19, and adults. e incidence is higher in men than 
women.[18] According to different studies, there are 100–
750  cases/100,000 individuals.[7,8,20,40,62,66] According to the 
Glasgow coma scale [Figure 2], we can classify TBI as: mild 
(13–15), moderate (9–12), or severe (3–8).[33,90]

Mild TBI (mTBI), the most prevalent kind of TBI 
(representing 70% of cases), has good survival rates, 
but up to 5 million Americans live with persistent TBI-
related disabilities, including social, motor and cognitive 
dysfunctions, mood disorders, sleep disturbances, and 
personality changes.[13,18,19,27] Severe or recurrent TBI 

dramatically increases the risk of neurodegeneration, 
dementia, stroke, and epilepsy.[105]

e primary injury in TBI can lead to focal and diffuse brain 
damage, which often coexist in moderate-to-severe cases.[61] 
However, diffuse axonal injury (DAI), which accounts for 
around 70% of TBI cases, is the most prevalent injury 
pattern.[86] e damage alters the axonal cytoskeleton and 
disrupts axonal transport.[76]

e secondary damage is frequently delayed and 
protracted, and multiple variables, including excitotoxicity, 
mitochondrial dysfunction, oxidative stress, lipid 
peroxidation, neuroinflammation, axon degeneration, and 
apoptosis, play a role in it.[72]

24  h post-TBI, the BBB shows signs of malfunctioning, 
allowing circulating leukocytes to infiltrate the damaged 
brain parenchyma and release proinflammatory cytokines 
such as Interleukin (IL)-1, IL-6, and tumor necrosis factor-
alpha (TNFα), and complement factors.[5,25,46] Neurological 
impairments, increased BBB permeability, and sustained 
overexpression of cytokines are all linked. TNF interacts 
strongly with the Fas ligand because it is a member of the 
Fas superfamily, and this interaction activates caspases, 
whose activity leads to apoptosis.[59] Following trauma, 
chemokines, including MIP-, MCP-1, and IL-8 (CXCL8), are 
greatly increased, working in concert to attract leukocytes 
to the lesion site further.[5,22,25,39,59] Astrogliosis is facilitated 
by persistent and delayed neuroinflammation, which 
also attracts macrophages and promotes the activation 
of local microglia.[39,59] Years after TBI, survivors can 
continue to exhibit a collection of macrophages and active 
microglia, which is indicative of phagocytosis and chronic 
inflammation.

A patient might experience accelerated neurodegeneration 
and the onset of chronic traumatic encephalopathy following 
a single or recurrent TBI. is has been seen in athletes and 
military personnel exposed to frequent head trauma and 
concussions.[24,54,55]

An investigation into the connection between TBI and 
neurodegenerative conditions found an association linking 
TBI and Alzheimer’s. e findings showed that TBI causes 
tau protein to be acetylated, a mechanism connected to 
Alzheimer’s. In animal’s memory, problems were linked to this 
acetylation, demonstrating the long-term effects of TBI.[83]

Scope and objectives of the review

The purpose of this review is to extensively examine 
and assess various clinical strategies for neuroprotection 
in the context of TBI. It is crucial to comprehend how 
different neuroprotective methods and treatments can 
be effective in reducing the impact of TBI and enhancing 
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Figure 1: Immune response following traumatic brain injury (TBI): (i-ii) following TBI, the primary mechanical injury can include meningeal contusion, 
axonal shearing, and cerebrovascular injury, culminating in meningeal and neuronal cell death, as well as microglial and astrocytic activation. (iii) Such 
neuronal injury and glial engagement generate chemokines, cytokines, and reactive oxygen species, along with the release of damage-associated molecular 
patterns (DAMPs), setting off an inflammatory response. (iv) In the presence of DAMPs, phagocytic microglia engage in debris clearance and synthesize 
neurotrophic agents. Sustained stimulation of these pathways induces subsequent injury through leukocyte recruitment, which initially aids in the removal 
of tissue debris. (v) Subsequently, it contributes to the progression of inflammation and disruption of the blood–brain barrier (BBB). e cytotoxic 
edema and compromised BBB integrity bring to an elevation of the intracranial pressure, leading to decreased cerebral blood flow, thereby intensifying 
hypoxia and disrupting the cerebral energy supply. Consequently, this cascade drives further neuronal depletion, propelling a self-perpetuating cycle 
of neuroinflammation and neurodegeneration. (vi) ese progressive pathological modifications culminate in neurological dysfunction and deficits in 
motor, cognitive, and emotional functions. TBI also induces alterations in the autonomic nervous system (ANS), which monitors and regulates DAMPs, 
consequently eliciting both cerebral and peripheral immune responses. (vii) Activation of the sympathetic ANS culminates in the peripheral discharge 
of catecholamines (epinephrine and norepinephrine), which suppress the systemic immune responses of macrophages through the cholinergic anti-
inflammatory pathway (CAO), thereby mitigating systemic inflammation. (viii) Furthermore, the release of catecholamines and glucocorticoids through 
the hypothalamic-pituitary-adrenal axis governs the functional behavior of systemic immune cells after TBI. (ix) e cellular immune response to 
traumatic brain injury involves an increase in leukocytosis and ROS generation, progresses through phagocytosis, and shifts from pro-inflammatory to 
anti-inflammatory states, potentially leading to immune dysfunction and immunosuppression. Abbreviations: ICP (increased intracranial pressure), CBF 
(cerebral blood flow), HPA (hypothalamic-pituitary-adrenal), ROS (reactive oxygen species). Image created with BioRender.com.
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patient outcomes. This review intends to cover a broad 
spectrum of neuroprotective approaches, encompassing 
pharmaceutical treatments, natural compounds, as well 
as cellular and molecular methods. Through a thorough 
examination of existing literature and clinical trials, the 
review aims to provide a comprehensive overview of 
the strengths and weaknesses of each neuroprotective 
strategy and its potential for practical application in 
clinical settings. In essence, the goals of this review are 
to offer valuable insights to healthcare professionals, 
researchers, and policymakers regarding evidence-
based neuroprotection techniques that show promise 
in mitigating the consequences of TBI and promoting 
improved patient recovery and quality of life.

METHODOLOGY

Inclusion and exclusion criteria for article selection

Inclusion and exclusion criteria play a crucial role in ensuring 
that the articles selected for this review are relevant and meet 
the objectives of the study. e following are the inclusion and 
exclusion criteria established for article selection. We included 
articles that directly address neuroprotection strategies in the 
context of TBI and focus on the prevention, reduction, or 
mitigation of brain injury after a TBI event. Articles published 
within the past 20 years have been given priority to ensure that 
the review reflects current research and developments in the 
field. Both preclinical and clinical studies have been included. 
is encompasses animal studies, in vitro experiments, as well 
as randomized controlled trials (RCTs), cohort studies,case–
control studies, and systematic reviews.

Only articles written in English have been included for ease of 
comprehension and analysis, and articles accessible through 
academic databases, online journals, and reputable sources 
have been prioritized to ensure reliability and credibility.

We excluded articles not directly related to neuroprotection 
in the context of TBI. is includes studies focused solely 
on other brain disorders or general neurological conditions. 
Gray literature, conference abstracts, editorials, opinions, 
and non-peer-reviewed articles have been excluded due 
to potential limitations in the rigor and credibility of 
the information presented, and articles not written in 
English have been excluded to avoid translation-related 
inaccuracies. In case of duplicate publications, only the most 
comprehensive and recent version has been included to avoid 
redundancy.

By adhering to these inclusion and exclusion criteria, the 
review aims to maintain a high standard of academic rigor, 
relevance, and reliability. e selected articles will contribute 
to a comprehensive and evidence-based analysis of 
neuroprotection strategies in the context of TBI, enabling a 
meaningful synthesis of findings and implications for clinical 
practice and future research.

Search strategy and databases used

We identified relevant keywords and phrases related 
to the topic, including “traumatic brain injury,” “TBI,” 
“neuroprotection,” “neuroprotective agents,” “interventions,” 
“clinical trials,” and “brain injury outcome.” We then 
combined these keywords using Boolean operators 
(AND, OR) to formulate effective search strings. For 
example, we used: (Traumatic brain injury OR TBI) 
AND (neuroprotection OR neuroprotective agents), 
(neuroprotection OR neuroprotective interventions) 
AND (brain injury outcome OR clinical trials), and (TBI, 
Neuroprotection, Outcomes evaluation, biomarkers, Imaging 
techniques, Challenges, “Brain Injuries, Traumatic”[Mesh], 
“Neuroprotection”[Mesh], “Outcome Assessment, Health 
Care”[Mesh], “Biomarkers”[Mesh], and “Diagnostic 
Imaging”[Mesh]). We incorporated synonyms, alternate 
spellings, and related terms to capture a wider range of 
relevant articles. Our search spanned the following databases: 
PubMed, Embase/MEDLINE, and Scopus.

To ensure a thorough search, the reference lists of relevant 
review articles and included studies have been manually 
checked for potentially relevant articles that may not have 
appeared in the initial database search.

By employing this comprehensive search strategy and using 
reputable databases, the review aims to gather a diverse 
and extensive collection of literature on neuroprotection 
strategies in TBI, enabling a robust analysis and synthesis of 
the available evidence.

Figure  2: is figure illustrates the Glasgow coma scale (GCS), a 
vital neurological assessment tool, as it pertains to traumatic brain 
injury (TBI). e GCS quantifies the patient’s level of consciousness 
based on eye, verbal, and motor responses, aiding clinicians in 
gauging TBI severity and guiding treatment decisions. Created with 
BioRender.com. 
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PHARMACEUTICAL INTERVENTIONS

A recent study developed bioactive nanofibrous dural 
substitutes that release insulin-like growth factor 1 (IGF-1). 
ese substitutes significantly enhanced neural cell survival 
post-TBI.[102] Furthermore, the study indicated a reduction 
in inflammation and apoptosis in the brain tissue, suggesting 
a protective role of the IGF-1-releasing dural substitutes.[102] 
Building on this, another study showed that animals treated 
with exosomes postinjury exhibited faster neurological 
recovery.[104] Specifically, the exosome-treated animals 
demonstrated improved motor function, reduced brain 
lesion sizes, and enhanced synaptic plasticity, indicating the 
potential of exosomes in promoting neural repair.[104]

A pediatric preclinical study on the effects of LM22A-4, 
a TrkB agonist, revealed that treated animals displayed 
improved anxiety-related behavior.[21] In addition, there 
was a notable reduction in myelin deficits, suggesting that 
LM22A-4 could aid in the repair of damaged neural pathways 
in pediatric TBI cases.[21] However, the PROTECT III and 
SYNAPSE studies, two important phase-III clinical trials, 
found that early administration of progesterone did not 
yield any benefits in terms of neurological recovery for TBI 
patients. A detailed analysis showed no significant difference 
in the Glasgow Outcome Scale (GOS) scores between the 
treated and placebo groups, indicating that progesterone 
might not be as effective as previously thought.[58]

Another approach combined ketamine and perampanel 
to study their effects on TBI-induced behavioral changes 
in mice.[2] e results were encouraging, with treated mice 
showing improved spatial memory and reduced aggressive 
behaviors in the Morris water maze test. Moreover, there 
was a notable decrease in inflammatory markers in the 
brain tissue of treated mice.[2] Similarly, another study used 
advanced imaging techniques to evaluate the effects of low-
intensity transcranial ultrasound stimulation and Baicalin 
intervention in rats with TBI.[67] e detailed outcomes 
revealed that the combined treatment resulted in reduced 
brain edema, improved BBB integrity, and enhanced neural 
connectivity, suggesting its potential as a therapeutic 
strategy.[67]

Numerous studies have explored the potential 
neuroprotective properties of erythropoietin (EPO) in the 
context of TBI. EPO’s mechanism of action involves binding 
to the EPO receptor, which leads to downstream signaling 
activation. is includes JAK-2 phosphorylation, initiating 
pathways such as PI3-K/Akt, Ras/MAPK, and JAK2-STAT, 
which are pivotal for EPO’s antiapoptotic and trophic effects. 
In addition, EPO has been shown to mitigate excitotoxicity, 
oxidative stress, and inflammation. It enhances neuronal 
viability under stress conditions and reduces glutamate 
toxicity, primarily through calcium-dependent mechanisms. 

Furthermore, EPO potentially improves cerebral perfusion 
and vascular integrity and stimulates angiogenesis through the 
VEGF pathway. It also plays a role in neurogenesis following 
TBI. EPO’s hematopoietic side effects have prompted 
the development of EPO analogs with neuroprotective 
potential. Clinical trials have yielded mixed results, with 
some suggesting neuroprotective effects while others remain 
inconclusive. Further research is needed to establish EPO’s 
definitive role in TBI treatment.[44,64,70,82,99,107,110,111]

Progesterone is another drug with neuroprotective 
capabilities which uses a series of intracellular pathways to 
achieve its effect. One study shows how EGFR activation 
mitigates BBB cell connexin loss in brain injury, stabilizing 
BBB structure, decreasing permeability, and reducing brain 
tissue edema. ERK, a MAPK family member encoded by the 
MAPK1 gene, operates through the Ras/Raf/MEK/ERK1/2 
pathway.[70] ERK/MAPK pathway activation contributes to 
neuronal injury and apoptosis, causing brain tissue damage. 
ERK/MAPK disinhibition through PD98059 effectively 
mitigates brain edema and neurological damage in a rat TBI 
model.[101]

Progesterone treatment in TBI influences steroid hormone 
receptor activity, RNA polymerase II transcription factor 
activity, receptor signaling protein tyrosine kinase activity, 
MAP kinase, and related protein kinase activity. KEGG 
analysis reveals core targets of progesterone treatment 
regulating apoptosis and signaling transduction. ese targets 
enrich PI3K/Akt, Ras, and MAPK pathways, indicating 
multi-pathway, multi-target effects for TBI treatment.[91]

e MAPK pathway, a prominent KEGG finding, employs 
a 3-stage enzymatic cascade (MAP3K/MAP2K/MAPK) 
to activate downstream transcription factors for signal 
transduction. JNK, a MAPK family component, participates 
in extracellular stimulus-induced activities such as apoptosis, 
metabolism, and DNA repair. In TBI, downregulated JNK3 
expression aids nerve function recovery and reduces edema 
and nerve cell apoptosis through TNFα, IL-1α, IL-1β, and 
IL-6 downregulation.[1,9]

P38 MAPK, a vital serine/threonine protein kinase, influences 
neural tissue pathophysiology. is pathway responds 
to oxidative stress and inflammation, initially inducing 
neurotoxicity and later inhibiting inflammation through an 
anti-apoptotic effect. P38 MAPK regulates apoptosis-related 
protein expression and enhances BBB permeability.[10]

Ras signaling, a classical MAPK pathway, operates through 
the Ras/Raf/MEK/ERK1/2 route. Inhibiting ERK/MAPK 
reduces neuronal injury, apoptosis, brain edema, and 
neurological damage. EGFR interaction with ligands like 
EGF activates Ras signaling, protecting against ischemic 
stroke and inflammation while promoting neuroprotection 
through IL-20 and reduced excitatory amino acid release. 
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us, progesterone’s influence on MAPK and Ras pathways 
mitigates secondary TBI effects and neuronal apoptosis and 
enhances neurological function.[42]

Numerous investigations have demonstrated the 
neuroprotective attributes of progesterone in both animal 
models and clinical trials of TBI, with no reports of severe 
adverse effects associated with treatment.[6] Specifically, 
in animal models of TBI, progesterone has been linked 
to a reduction in secondary injuries following the initial 
trauma, manifested as a decrease in cerebral edema and the 
prevention of secondary neuronal degeneration.[74] ese 
mechanisms contribute to the amelioration of behavioral 
deficits resulting from TBI. In addition, two independent 
Phase II clinical trials have reported positive effects of 
progesterone on both mortality rates and the GOS scores in 
TBI patients.[106,108]

However, the outcomes of two randomized, double-masked, 
and multicenter Phase III RCTs have indicated no significant 
differences between placebo-  and progesterone-treated 
groups concerning mortality rates and functional outcomes 
at the 6-month post-TBI mark.[106,108] Furthermore, a 
comprehensive meta-analysis conducted in 2016 found that 
progesterone did not significantly reduce mortality rates or 
improve neurological outcomes in severe TBI patients.[47] 
Intriguingly, while certain studies, such as the one conducted 
by Santarsieri et al.,[79] administering medroxyprogesterone 
through nasogastric tubing, have shown limited clinical 
benefits, other meta-analyses have suggested that 
progesterone provided neuroprotection exclusively when 
administered intramuscularly. e variation in efficacy 
between intravenous and intramuscular administration 
remains unclear, necessitating a careful examination of the 
delivery route across clinical trials.[4]

Another study included seven RCTs that were also featured 
in the meta-analysis. While these trials spanned follow-
up periods ranging from 30  days to 6  months, they 
did not conduct stratified analyses based on follow-up 
duration, overlooking potential time-dependent effects of 
progesterone. e researcher’s investigation assessed the 
efficacy of progesterone in severe TBI patients at both short-
term (within three months postinjury) and long-term (at six 
months postinjury) endpoints. Remarkably, progesterone 
administration correlated with a reduced mortality rate and 
higher GOS scores within the first three months following 
injury; however, no significant advantages were observed at 
the 6-month mark. It is important to note that interpreting 
the long-term effects of progesterone should be approached 
with caution due to the influence of numerous confounding 
factors.[65]

In summary, progesterone administration enhances clinical 
outcomes in severe TBI patients within three months 
following injury, although discernible long-term benefits at 

the 6-month postinjury interval are less evident. Further, 
investigations are warranted to thoroughly explore inter-
study variations and inform the design of future clinical 
trials.

N-acetylcysteine (NAC) is a compound known for its 
antioxidant properties and its potential as a neuroprotective 
agent.[17,78] From a biochemical perspective, NAC serves as 
a provider of cysteine, a crucial component in synthesizing 
the intracellular antioxidant glutathione (GSH). is ability 
allows NAC to enhance the availability of cysteine for the 
replenishment of GSH when the body is under oxidative 
stress.[23] NAC can directly function as an antioxidant through 
its thiol group. NAC is highly hydrophilic, with a low log 
value of −5.4, suggesting that it has limited ability to traverse 
the intact BBB passively.[41] In clinical applications, NAC has 
been established as an effective therapy for preventing liver 
damage from acetaminophen/paracetamol overdose.[23,103] 
Moreover, it has been explored in clinical trials for various 
neurological conditions, including autism, major depression, 
neonatal asphyxia, and neurodegenerative diseases. Notably, 
NAC has exhibited promising results in mitigating the 
consequences of mTBI, likely through its antioxidative 
properties in the brain.[32,41]

N-acetyl cysteine has demonstrated significant neuroprotective 
effects in animal models, particularly in mitigating secondary 
neuronal injury following TBI. Studies in rats have confirmed 
the beneficial antioxidant effects of NAC when administered 
after brain injury.[8,15,109] NAC functions by elevating the 
levels of GSH, a molecule composed of L-glutamic acid, 
L-cysteine, and glycine, within the brain. By providing a 
source of cysteine, a precursor to GSH, NAC can counteract 
the damage caused by reactive oxygen species within 
the mitochondria of the substantia nigra in Parkinson’s 
disease.[8] Furthermore, NAC has shown the ability to 
reduce the deposition of tau and beta-amyloid and act as 
an anti-inflammatory agent in treating Alzheimer’s disease 
by upregulating GSH. is demonstrates its effectiveness in 
addressing TBI and managing subsequent neurodegenerative 
conditions associated with TBI in rat models.[52]

A double-masked and placebo-controlled clinical trial was 
conducted to assess the efficacy of NAC in patients with 
mTBI caused by blasts. e treatment group received 2 g of 
NAC twice daily for the first four days, followed by 1.5 g of 
NAC twice daily for the next three days. After seven days 
of treatment, patients were evaluated for symptoms such 
as dizziness, headache, hearing loss, memory loss, sleep 
disturbances, and neurocognitive dysfunction. Significant 
improvements (P < 0.01) in these symptoms were observed 
in patients who received NAC within 24 hours of injury, and 
the treatment group had an 86% chance of recovery. ese 
findings suggest the need for further investigation into the 
long-term effects of NAC treatment in TBI.[32]
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In addition, in 2017, Clark et al. conducted a randomized, 
double-masked, and placebo-controlled Phase I study 
in children aged 2–18 who were admitted to a Pediatric 
Intensive Care Unit after severe TBI.[11] e study revealed no 
adverse effects, including undesirable physiological changes, 
and did not observe alterations in contemporary brain injury 
biomarkers related to administering the drug combination. 
ese results support the potential for progressing to a Phase 
II/III trial to explore the efficacy of NAC treatment in severe 
TBI.

TARGETING INFLAMMATION AND OXIDATIVE 
STRESS

The impact of inflammation and oxidative stress in TBI

According to normal physiology, both intracellular and 
extracellular processes contribute to and lead to secondary 
injury. Inflammatory and oxidative responses following 
TBI can be disruptive. Proinflammatory factors such as 
tumor necrosis factor and IL -6, along with reactive species 
such as superoxide and peroxynitrite, are found in high 
concentrations in injured brain tissue. All these factors can 
contribute to increased inflammation, leading to damage 
to neuronal tissue and DNA, particularly due to reactive 
species. However, this also promotes apoptosis of the affected 
cells.[16,26,29,84] erefore, treatments targeting these processes 
can play an important role in neuroprotection.

Anti-inflammatory and antioxidant therapies explored

NMDA-receptor antagonists

Elevated concentrations of glutamate exceeding 100  μM 
are implicated in neuronal destruction and cell 
death.[49,97] Numerous clinical trials involving NMDA 
receptor antagonists such as aptiganel, dextromethorphan, 
dizocilpine, eliprodil, gavestinel, licostinel, and selfotel were 
initiated, but some were discontinued prematurely or failed 
to demonstrate their efficacy in stroke or TBI trials. Other 
trials suggested potential neurotoxic effects linked to this 
class of drugs.[34,69]

Glutamate agonists

Microglia, astrocytes, and neurons exhibit high glutamate 
receptor expression. Glutamate agonists have been observed 
to inhibit caspase-dependent apoptosis and mitigate 
microglial inhibition of NADPH oxidase. e mGluR5 
agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) has 
demonstrated neuroprotective and anti-apoptotic properties 
in neuronal and microglial cultures. In summary, early 
treatment with glutamate agonists in laboratory settings has 
shown promising neuroprotective effects post-TBI.[45]

Calcium-channel antagonists

e blockade of neural calcium channels holds the potential 
to mitigate glutamate excitotoxicity, reduce neurotransmitter 
release, and disrupt the apoptosis cascade. Calcium channel 
blockers such as nicardipine and nimodipine have been 
suggested to play a neuroprotective role and mitigate 
vasospasm in subarachnoid hemorrhage.[49,53]

Immune system modulation

e immunosuppressant Cyclosporine-A reduces T-cell-
mediated immunity and is used in organ transplant 
recipients. It inhibits calcineurin and cyclophilin-A, 
suppressing mitochondrial pore formation and potentially 
curbing the apoptotic cascade.[88] Higher doses of 
cyclosporine seem associated with improved outcomes. 
A controlled trial involving 100 patients with GCS <10 and 
radiological evidence of DAI found that while cyclosporine 
had no adverse effects post-TBI, it did not improve outcomes 
or mortality.[3] Other studies showed little impact on 
lymphocyte count or infection rates following administration 
in TBI patients.[12,28]

Challenges and potential for clinical translation

On the frontier of data-driven research, Lipponen et al. 
developed a unique pipeline for TBI treatment discovery 
using transcriptomics data.[43] e outcomes of their 
approach identified several potential drug candidates that 
could modulate the inflammatory response post-TBI, 
offering a new avenue for TBI treatment.[43]

A recent study focused on the role of NADPH oxidase 2 
(NOX2) in TBI. e outcomes showed that GSK2795039 
reduced NOX2 expression and activity in a TBI mouse 
model. In addition, treated mice displayed improved 
cognitive functions, suggesting that targeting NOX2 could be 
a potential therapeutic strategy.[100]

Therapeutic hypothermia and brain cooling

Hypothermia was first described in the Edwin Smith 
Papyrus, an ancient Egyptian treatise on medicine and 
surgery written over 5000  years ago.[98] Clinical studies 
focusing on hypothermia in TBI have centered around 
multifactorial mechanistic approaches, as demonstrated 
in basic science studies. Hypothermia effectively manages 
elevated intracranial pressure (ICP) and mitigates secondary 
brain injury.[77,112] Moreover, hypothermia acts to prevent 
secondary brain injury by improving neuroinflammation, 
ischemia-perfusion injury, and excitotoxic, oxidative, and 
cytokine-induced alterations. In addition, hypothermia 
protects the BBB and reduces cerebral metabolism, curbs 
energy expenditure and oxygen consumption.[93]
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CELLULAR AND MOLECULAR APPROACHES

Cell-based therapies and gene therapies for TBI 
neuroprotection

A recent study aimed to evaluate the effects of administering 
a single dose of exosomes early after injury over seven 
days in a swine model of TBI and hemorrhagic shock. 
At the end of the seven days postinjury, levels of markers 
related to inflammation, apoptosis, and neural plasticity 
were analyzed.[104] Animals treated with exosomes showed 
improved neurologic outcomes, with lower severity scores 
and faster recovery within the first four days. By the 7th day, 
exosome-treated animals had smaller brain lesion sizes. 
Inflammatory markers were reduced, while brain-derived 
neurotrophic factor levels were increased. BAX and NF-κB 
levels were also lower.

A recent study delved into the impact of intramuscular IGF-1 
gene therapy.[31] e outcomes showed a significant reduction 
of reactive gliosis in treated animals. Furthermore, functional 
outcomes, such as motor coordination and spatial memory, 
were notably improved in the treated group, suggesting 
the potential of gene therapy in TBI treatment.[31] Another 
study evaluated the therapeutic effectiveness of mouse 
multipotent adult progenitor cells (mMAPCs) against 
mouse mesenchymal stem cells. e outcomes revealed that 
mMAPCs-treated animals showed reduced demyelination 
and enhanced remyelination, suggesting a superior 
therapeutic profile of mMAPCs.[85]

Another study explored stem cell therapy combined with 
genetic modifications. e outcomes showed that rats treated 
with mesenchymal stem cells overexpressing IL-10 had 
reduced autophagy response, suggesting enhanced neural 
protection.[51]

CLINICAL IMPLICATIONS AND CHALLENGES

Translating neuroprotection strategies to clinical practice

Facilitating the transition of experimental neuroprotection 
methods into practical clinical applications represents a 
pivotal step in advancing TBI care. is phase demands 
meticulous planning and comprehensive evaluation to 
integrate these strategies seamlessly into established 
clinical protocols. e employment of neuroprotection 
techniques requires the establishment of standardized 
guidelines and procedures that harmonize with current 
therapeutic approaches. Extensive clinical trials and real-
world investigations are imperative to ascertain the safety, 
efficacy, and feasibility of these therapies and bridge the 
divide between laboratory research and clinical practice. 
Collaboration among neurologists, neurosurgeons, 
rehabilitation specialists, and other medical experts is 
essential, fostering a coordinated approach that optimizes 

patient care and capitalizes on the potential benefits of 
neuroprotection methods.

Challenges in implementation and personalized approaches

e effective implementation of neuroprotection techniques 
encounters several challenges despite their considerable 
potential. Patient variability, injury severity, and individual 
responses to treatment underscore the importance of tailored 
strategies for each TBI case. Overcoming logistical hurdles, 
securing funding, and educating healthcare professionals 
are essential steps for integrating neuroprotection methods 
across diverse clinical settings. e adoption of innovative 
interventions demands a delicate balance between the need 
for swift deployment of effective therapies and the thorough 
evaluation required for their safe and successful application. 
e development of adaptable and scalable procedures 
that consider the complex interplay of clinical, logistical, 
and patient-related factors is pivotal in surmounting these 
obstacles.

ICP and cerebral perfusion pressure (CPP) shed light on the 
dynamics of CBF. However, using probes like PbtO2, which 
measures extracellular oxygen tension, metabolic events 
can actually be measured.[37,48,95] Oxygen diffusion affects 
the equilibrium of supply and usage.[57,75] Due to edema and 
microvascular collapse, diffusion problems can easily develop 
in pericontusional tissue, lowering oxygen tension.[57]

Defining optimal PbtO2 target values is complex.[68] Low 
oxygen levels, between 15 mm  Hg and 20 mm  Hg, are 
associated with poor outcomes.[57,80,94] By adjusting arterial 
pressure, oxygen tension, or both, PbtO2 can be restored.[56,87] 
ese strategies appear to have a higher chance of success 
than those that only rely on ICP and CPP. However, the low 
number of studies reduces the strength of these findings.[60]

Metabolic crisis can be recognized by a high lactate: pyruvate 
ratio, which also serves as a standalone predictor of death.[92] A 
better lactate: Pyruvate ratio could be a sign that the treatment 
is working. Investigations have been done into how different 
therapies, such as hyperoxia and hypertonic lactate, affect 
how the brain uses energy. Low PbtO2 may normally be raised 
by normobaric hyperoxia, which is commonly induced by 
raising the inspired oxygen; however, conflicting effects of 
microdialysis have been recorded.[50,73] Nevertheless, results of 
imaging studies indicate that this intervention may enhance 
cerebral oxygen metabolism[63] and reverse pericontusional 
cytotoxic edema.[96] In individuals with a pathologic lactate: 
Pyruvate ratio, efforts to enhance brain glucose metabolism 
using hypertonic lactate infusions clearly have a positive 
impact.[71] ese early findings must be verified.

e idea of employing advanced multimodal monitoring to 
guide the treatment of elderly patients is appealing, but there 
exists a notable gap in our understanding of this domain. is 
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knowledge deficit can be attributed in part to the elevated 
risks linked with invasive intracranial monitoring in older 
individuals. Many of these patients are on anticoagulant and 
antiplatelet medications, which heighten the potential for 
complications. Furthermore, due to the possibility of a less-
than-optimal outcome, there is a reduced inclination toward 
intensive monitoring and treatment in this demographic.

Ethical considerations

Integrating neuroprotection techniques into TBI treatment 
demands careful ethical considerations. is involves risk 
assessment, informed consent, and addressing cost and access 
issues for equitable treatment. Patient, caregiver, and family 
perspectives are vital. Engaging with TBI patients’ experiences 
guides ethical decision-making and enhances the practicality 
of neuroprotection techniques. A comprehensive framework 
balancing beneficence, autonomy, and justice emerges 
through the convergence of ethics and patient insights.

CONCLUSION

is comprehensive review delves into various 
neuroprotective strategies for TBI. ese interventions work 
through intricate molecular pathways, affecting processes 
such as apoptosis, inflammation, oxidative stress, and 
excitotoxicity. Clinical trials have produced mixed results, 
influenced by factors such as administration methods, 
dosages, and follow-up durations.

TBI management proved to be extremely complex since 
no single intervention is a panacea for this multifaceted 
condition. Instead, a holistic approach considering patient-
specific factors, timing, and a combination of therapies 
is crucial for improving outcomes. Ongoing efforts to 
standardize protocols and refine patient selection criteria 
offer the promise of more reliable future treatments. Despite 
challenges, the pursuit of neuroprotective strategies in 
TBI offers hope for better patient outcomes. e evolving 
landscape of TBI research holds the potential for continued 
progress in understanding and managing this critical public 
health concern.
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