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INTRODUCTION

Background and significance of traumatic brain injury (TBI)-related neuroprotection

TBI shows significant morbidity, disability, and mortality across all age groups.[24] TBI arises from 
a mechanical injury, such as a blow to the skull, and leads to neurological deficits. Common 
causes include falls, motor vehicle accidents, blunt force trauma, and assault.[53]

ABSTRACT
Background: Traumatic brain injury (TBI) poses a significant public health concern, profoundly impacting 
individuals and society. In this context, behavioral interventions have gained prominence as crucial elements in 
TBI management, addressing the diverse needs of TBI-affected individuals.

Methods: A comprehensive literature search was conducted, utilizing databases such as PubMed, Embase, and 
Scopus. Inclusion criteria encompassed studies focusing on behavioral interventions in TBI, with a particular 
emphasis on their impact on outcomes. Relevant articles published within the past decade were prioritized, and a 
qualitative synthesis of the findings was performed.

Results: Behavioral interventions have demonstrated their effectiveness in addressing various aspects of TBI care. 
They have been instrumental in improving cognitive functions, emotional stability, and adaptive behaviors among 
TBI patients. However, it is important to acknowledge that challenges still exist, including issues related to clinical 
heterogeneity and healthcare disparities.

Conclusion: The integration of behavioral interventions into standard clinical practice marks a transformative shift in 
TBI care. This approach holds immense potential for enhancing patient outcomes and elevating the overall quality of 
life for individuals grappling with the complexities of this condition. This review serves as a clarion call for healthcare 
practitioners, researchers, and policymakers to recognize the pivotal role of behavioral interventions in TBI care, 
advocating for their wider adoption to advance the field toward a more holistic and patient-centric approach.
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The initial damage triggers a local inflammatory response, 
primarily driven by microglia activation.[54] Damage related 
to TBI can be categorized into two main types: Primary injury 
(from mechanical forces) and secondary injury (further 
damages following the primary insult).[73,80] The primary injury 
is related to mechanical damage: hemorrhages, vascular injury, 
contusions, blood flow alterations, damage to the blood–
brain barrier (BBB), and metabolic alterations. [38,63,71] The 
biochemical reactions that start within minutes and can persist 
for days, months, or even years lead to neuroinflammation, 
neurodegeneration, and neurological deficits.[30,34,38,55,68,69,85,88,98] 
These secondary injury mechanisms [Figure  1] offer a 
prolonged therapeutic window to intervene.[40,62]

TBI’s social and financial costs have been drawing attention 
for years.[92,48] 27 million new cases of TBI arose in 2016 
alone, with a prevalence that increased by 8.4% over 
26  years.[48] However, decades of research still often left us 
with less-than-ideal clinical outcomes, mostly due to the 
limited understanding of the complex heterogeneity of this 
condition.

Epidemiology and impact on the brain

TBI affects all ages, with a higher incidence in 
males.[11,13,27,29,57,74,77] Globally, there are an estimated 64–70 
million new cases of TBI each year.[24]

Mild TBI (mTBI) [Table 1 and Figure 2], which accounts 
for 70% of all TBI patients, offers a good chance of survival; 
more than 3.17 million individuals in the United States 
suffer from chronic consequences of TBI.[20,27,28] The primary 
injury can be focal and/or diffuse, and diffuse axonal injury 
is the most common damage pattern (70%), characterized 
by widespread damage to axons (particularly in subcortical 
regions, deep white matter tissue, the brain stem, and the 
corpus callosum), affecting axonal transport and leading to 
the degradation of axonal cytoskeleton components.[73,83,89]

Scope and objectives of the review

The scope of this review is to comprehensively explore and 
analyze behavioral neuroprotection strategies that can be 
employed in the context of TBI and represent an important 
aid to surgical and pharmacological therapies. By investigating 
the available literature and clinical trials, the review seeks 

to provide a comprehensive overview of the strengths and 
limitations of each strategy and their potential for translation 
into clinical practice. Ultimately, the objectives of this 
review are to inform healthcare practitioners, researchers, 
and policymakers about evidence-based neuroprotection 
strategies that hold promise in alleviating the consequences of 
TBI and fostering better patient recovery and quality of life.

METHODOLOGY

Inclusion and exclusion criteria

The following inclusion criteria have been applied to ensure 
the relevance and comprehensiveness of the review. We 
included peer-reviewed research articles, clinical trials, 
systematic reviews, and meta-analyses published in the 
English language. The articles had to be focused on patients 
diagnosed with TBI and on behavioral interventions as a 
primary or adjunctive treatment strategy for TBI.

To maintain the rigor of the review, the following exclusion 
criteria have been applied. Non-peer-reviewed articles, 
conference abstracts, and editorial/opinion pieces were 
excluded, as well as studies lacking relevant data on the 
impact of behavioral interventions on TBI outcomes.

Search strategy

A comprehensive literature search will be conducted in 
multiple electronic databases, including PubMed/MEDLINE 
and Scopus. The search strategy will use a combination of 
Medical Subject Headings terms and keywords related to 
“traumatic brain injury” and “behavioral interventions.” 
The search strategy will be adapted for each database and 
reviewed by at least two members of the team for accuracy 
and completeness. Example search terms include: (“traumatic 
brain injury” OR “TBI” OR “head injury” OR “brain trauma”) 
AND (“behavioral intervention” OR “rehabilitation” OR 
“exercise” OR “sleep”).

Study selection and quality assessment

Two independent reviewers initially screened the titles 
and abstracts of all identified articles to determine their 
relevance based on the inclusion and exclusion criteria. 
Full-text articles have been retrieved for further evaluation 
if they meet the initial screening criteria. Any discrepancies 
between the reviewers regarding article inclusion will be 
resolved through discussion or consultation with a third 
reviewer if necessary.

The quality of each included study will be assessed using 
appropriate tools such as the Risk of Bias 2. The quality 
assessment will guide the interpretation of study findings.

Table 1: Classification of TBI severity based on the GCS score.[93]

TBI severity GCS score

Mild 13–15
Moderate 9–12
Severe 3–8
GCS: Glasgow coma scale,[43] TBI: Traumatic brain injury
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 Figure 1: Immune response following traumatic brain injury (TBI): (i-ii) following TBI, the primary mechanical injury can include meningeal contusion, 
axonal shearing, and cerebrovascular injury, culminating in meningeal and neuronal cell death, as well as microglial and astrocytic activation. (iii) Such neuronal 
injury and glial engagement generate chemokines, cytokines, and reactive oxygen species, along with the release of damage-associated molecular patterns 
(DAMPs), setting off an inflammatory response. (iv) In the presence of DAMPs, phagocytic microglia engage in debris clearance and synthesize neurotrophic 
agents. Sustained stimulation of these pathways induces subsequent injury through leukocyte recruitment, which initially aids in the removal of tissue debris. 
(v) Subsequently, it contributes to the progression of inflammation and disruption of the blood–brain barrier (BBB). The cytotoxic edema and compromised 
BBB integrity bring to an elevation of the intracranial pressure, leading to decreased cerebral blood flow, thereby intensifying hypoxia and disrupting the cerebral 
energy supply. Consequently, this cascade drives further neuronal depletion, propelling a self-perpetuating cycle of neuroinflammation and neurodegeneration. 
(vi) These progressive pathological modifications culminate in neurological dysfunction and deficits in motor, cognitive, and emotional functions. TBI also induces 
alterations in the autonomic nervous system (ANS), which monitors and regulates DAMPs, consequently eliciting both cerebral and peripheral immune responses. 
(vii) Activation of the sympathetic ANS culminates in the peripheral discharge of catecholamines (epinephrine and norepinephrine), which suppress the systemic 
immune responses of macrophages through the cholinergic anti-inflammatory pathway (CAO), thereby mitigating systemic inflammation. (viii) Furthermore, 
the release of catecholamines and glucocorticoids through the hypothalamic-pituitary-adrenal axis governs the functional behavior of systemic immune cells after 
TBI. (ix) The cellular immune response to traumatic brain injury involves an increase in leukocytosis and ROS generation, progresses through phagocytosis, and 
shifts from pro-inflammatory to anti-inflammatory states, potentially leading to immune dysfunction and immunosuppression. Abbreviations: ICP (increased 
intracranial pressure), CBF (cerebral blood flow), HPA (hypothalamic-pituitary-adrenal), ROS (reactive oxygen species). Image created with BioRender.com.
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Data analysis and reporting

Data synthesis will involve a narrative summary of the 
findings. The results of this review will be reported in a 
structured manner, including tables, figures, and a narrative 
synthesis.

Ethical considerations

As this review involves the analysis of existing published data, 
ethical approval is not required. However, ethical principles 
of data confidentiality and proper citation will be adhered to 
throughout the review process.

LIFESTYLE-BASED INTERVENTIONS

Recent research has provided us with invaluable insights 
into the intricate relationship between lifestyle factors and 
TBI, shedding light on the complex interplay between diet, 
exercise, lifestyle interventions, and post-TBI outcomes. 
This evolving body of research not only deepens our 
understanding of the challenges faced by individuals with TBI 
but also highlights the potential for targeted interventions 
that could significantly improve their quality of life.

Examination of lifestyle factors influencing TBI outcome

In one study, the incidence of preinjury stressful life 
events was a strong predictor of outcome, and a history of 
posttraumatic stress symptoms was associated with lower 
scores on the mental health component of the Short-
Form Health Survey (SF-36). These findings highlight the 
importance of assessing preinjury stress and posttraumatic 

stress symptoms to identify those at risk for poor outcomes 
after mTBI.[96] The Utrecht coping list can be used to assess 
coping mechanisms at multiple points post-injury. Most 
coping mechanisms demonstrated a decline over time, except 
for positive reframing, which initially decreased and then 
increased. Passive coping mechanisms showed stability over 
the 1st  year after injury. High feelings of self-efficacy were 
linked to active coping, while low feelings of self-efficacy 
correlated with passive coping. These findings suggest that 
passive coping might serve as an inclusion criterion for 
interventions and could be a target for treatment efforts, 
especially when considering its influence on self-efficacy 
perception.[84]

A preclinical study examined the effects of social and 
environmental enrichment on outcomes in a pediatric 
TBI model. It demonstrated that enhanced social and 
cognitive environments could lead to improved long-
term outcomes. Environmental enrichment increased 
sensorimotor performance and sociosexual interactions, 
while social housing reduced hyperactivity and anxiety-
like behaviors.[25] Similarly, other reports of rats placed in 
an enriched environment for 15  days before inducing a 
prefrontal cortical injury demonstrated that environmental 
enrichment preexposure led to improved spatial memory 
recovery and reduced sensory neglect following TBI.[50]

Nutrition

In one study, French maritime pine bark extract 
supplementation significantly reduced Interleukin (IL)-6, IL-
1β, and C-reactive protein levels in the intervention group of 
TBI patients compared to the control group. Clinical scores 
and the Nutric score were improved in the intervention 
group, leading to a 15% higher survival rate.[65]

The potential of ketogenic diets (KD) in acute neurotraumatic 
events was recently explored, and KD demonstrated benefits 
in improving motor neurorecovery, gray matter sparing, 
pain thresholds, and neuroinflammation, with effects likely 
linked to cellular energetics, mitochondria function, and 
inflammation modulation.[99] A scoping review focused on 
the KD’s therapeutic effects on TBI reported that, while 
evidence from rat studies suggested positive impacts on 
cerebral edema, apoptosis, and behavioral outcomes, 
human trials mainly established safety rather than treatment 
efficacy.[67]

On the other hand, preclinical evidence suggested benefits 
from adding substantial amounts of omega-3 fatty acids 
(n-3FAs) to improve outcomes in TBI patients.[60] High-dose 
n-3FA supplementation demonstrated potential benefits 
in mitigating neuroinflammatory responses in post-TBI 
rat models.[8] While results on the effects of omega-3 long-
chain polyunsaturated fatty acids (PUFAs) on human 

Figure  2: This figure illustrates the Glasgow coma scale (GCS), a 
vital neurological assessment tool, as it pertains to traumatic brain 
injury (TBI). The GCS quantifies the patient’s level of consciousness 
based on eye, verbal, and motor responses, aiding clinicians in 
gauging TBI severity and guiding treatment decisions. Created with 
BioRender.com.
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cognition were inconsistent across studies, there are trends 
toward cognitive benefit, particularly in populations 
experiencing early cognitive decline.[87] The potential of 
n-3FAs for neuroprotection was also explored, with a focus 
on enhancing brain resilience and recovery, suggesting that 
n-3 FAs, particularly docosahexaenoic acid (DHA), could 
be beneficial for TBI and deserve consideration in high-risk 
populations.[59]

Preinjury supplementation with creatine has 	also been 
shown to boost the availability of energy, alleviate oxidative 
stress, and uphold the balance of energy within mitochondria; 
the potential beneficial impacts of creatine include its direct 
influence on maintaining mitochondrial energy levels and 
regulating neurotransmitter receptors. Another nutrient 
is curcumin, which is present in turmeric and recognized 
for its antioxidative and anti-inflammatory characteristics. 
Curcumin can shield the brain against lipid peroxidation 
and oxidative stress. Moreover, it counteracts inflammatory 
pathways by inhibiting the activation of nuclear factor-kappa 
B (NF-κB) and the release of proinflammatory cytokines.[75]

Oligonol, a phenolic product derived from polyphenols, 
was studied as a protective factor against oxidative stress, 
apoptosis, and neurodegenerative disorders.[6] Oligonol 
showed potential in reducing oxidative stress and triggering 
apoptosis, showing neuroprotective and chemopreventive 
effects. Researchers also investigated the impact of soy 
protein isolate supplementation on poststroke recovery in 
rats. Following middle cerebral artery occlusion  -induced 
stroke, rats fed a soy protein diet exhibited less severe 
reaching deficits than those on a control diet. This suggests 
that a soy protein-based diet could offer protection against 
neurological damage after a stroke.[14]

Researchers investigated the effects of branched-chain 
amino acid (BCAA) supplementation in severe TBI patients. 
BCAAs were found to enhance cognitive recovery and reduce 
cognitive decline without negative effects on precursor 
amino acids.[5] It is interesting to examine the relationship 
between caffeine intake, cognitive decline, and incident 
dementia in older individuals. High caffeine consumption 
was associated with reduced decline in verbal retrieval and 
visuospatial memory in women but not men. Although 
caffeine consumption did not reduce dementia risk, it 
showed potential for excreting a neuroprotective effect.[81] 
Tocotrienols, specific Vitamin E isoforms, have also been 
shown to have potential benefits in promoting apoptosis, 
neuroprotection, and anti-obesity effects, particularly in the 
context of daily whole rice intake.[31]

In a clinical case report, short-term parenteral nutrition 
with fat emulsion was linked to the development of 
hemophagocytosis and multiple organ failure in a TBI 
patient. The authors suggested that fat retention or 
agglutination of fat particles might contribute to this 

outcome.[82] Similarly, a high-fat diet (HFD) showed an 
impact on the outcomes of TBI in an experimental mouse 
model.[44] The mice were fed an HFD for two months and 
subjected to control cortical impact-induced TBI. The 
results revealed that the combination of TBI and HFD 
led to significant metabolic, neurological, and behavioral 
impairments. Mice on the HFD exhibited elevated blood 
glucose levels and an increased fat-to-lean ratio. Cognitive 
functions such as spatial learning and memory, as well as 
motor coordination, were notably impaired. Furthermore, 
the HFD exacerbated neuroinflammation, oxidative stress, 
and neurodegeneration. Cell proliferation post-TBI was also 
suppressed in the HFD group, accompanied by an increased 
lesion volume. This study highlighted the detrimental effects 
of chronic HFD feeding on TBI outcomes, underscoring its 
potential to worsen functional impairments and hinder brain 
recovery.

A study examining the combined effects of progesterone 
and Vitamin D on recovery after TBI in middle-aged rats 
showed potential benefits in preserving spatial and reference 
memory, reducing neuronal loss, and preventing certain 
pathophysiological consequences of brain injury.[90]

Wogonin, a flavonoid with anti-inflammatory properties, 
was investigated for its effects on functional outcomes, 
brain edema, and inflammatory pathways following TBI. 
Wogonin treatment improved functional recovery, reduced 
brain edema, and attenuated the TLR4/NF-κB-mediated 
inflammatory response in mice.[15]

A different study investigated the effects of a low-protein 
and high-carbohydrate (LPHC) diet on a mouse model of 
Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP).[19] The LPHC diet 
demonstrated neuroprotective effects, ameliorating motor 
deficits and increasing dopamine and serotonin levels in 
the striatum of PD mice. The study found that fibroblast 
growth factor 21 (FGF-21) levels were elevated in PD mice 
after LPHC treatment, and the administration of FGF-21 
provided protection to MPTP-induced cells. The LPHC 
diet normalized gut bacterial composition imbalance and 
influenced fecal microbiome function, thereby suggesting 
its role in regulating the microbiota-metabolite-brain axis. 
The LPHC diet also altered amino acids and bile acids. 
These findings highlighted the potential of the LPHC diet 
in attenuating movement impairments in PD mice and the 
importance of the gut-microbiota-brain axis.

Supplementation with nicotinamide adenine dinucleotide 
(NAD [+]) and its precursors as a strategy to prevent 
cognitive decline across various disease contexts was also 
explored. The review summarized the research findings 
for different sources of cognitive impairment, including 
age-related cognitive decline, Alzheimer’s disease, vascular 
dementia, diabetes, stroke, and TBI. The review mentioned 
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that NAM administration in rat models demonstrated 
potential benefits, including reduced lesion sizes and 
diminished sensory, motor, and cognitive deficits. The 
study also highlighted positive outcomes observed in 
animal models. Still, it emphasized the need for controlled 
clinical research to determine the efficacy of NAD (+) 
precursor supplementation in addressing cognitive health in 
humans.[12]

In a randomized, double-blind, placebo-controlled, and 
crossover trial, the effects of brain-directed nutrients (BDNs) 
on cerebral blood flow (CBF) and neuropsychological testing 
were investigated.[2] The study evaluated the impact of BDN 
supplementation on regional CBF (rCBF) and cognitive 
function in healthy individuals. The results showed that 
BDN supplementation led to improved rCBF in specific 
brain regions, as well as enhanced cognitive and emotional 
functions. These findings indicated the potential of BDNs 
in enhancing neuropsychological outcomes and provided 
insights into their effects on brain health.

In a pilot trial, the effects of l-carnitine on biomarkers of injury 
in patients with TBI were investigated.[64] The study examined 
the impact of l-carnitine supplementation on neuron-specific 
enolase (NSE) levels, a marker of inflammation, in patients 
with severe TBI. While l-carnitine led to improvements in 
neurocognitive function and reduced brain edema, it did 
not significantly affect serum NSE levels or overall mortality 
rate. The study highlighted the complexity of TBI treatment 
and the need for further research into effective therapeutic 
strategies.

Using a rat model of TBI, a study examined the potential 
neuroprotective role of pyrroloquinoline quinone (PQQ).[103] 
The results showed that PQQ treatment decreased apoptosis 
and autophagy markers, improved electrophysiological 
function, and increased the viability of primary astrocytes 
exposed to glutamate. PQQ was suggested to play a role in 
reducing inflammation and autophagy induced by TBI, 
contributing to its potential neuroprotective effects.

Researchers aimed to explore the neuroprotective effects 
of phospholipid precursors administered postinjury in a 
study.[94] Using a mouse model of TBI, the study investigated 
the impact of a multi-nutrient combination, Fortasyn(®) 
Connect (FC), on TBI outcomes. The results showed that FC 
treatment improved sensorimotor outcomes, reduced lesion 
size, restored myelin, and enhanced synaptic proteins. FC 
was suggested to have potential therapeutic value in TBI due 
to its impact on various aspects of neuroprotection.

Using a cold injury model in mice, a study investigated the 
effects of lutein/zeaxanthin isomers (L/Zi) isomers on brain 
injury outcomes.[37] L/Zi treatment reduced infarct volume, 
BBB permeability, and proinflammatory cytokine levels 
and increased the expression of neuroprotective proteins. 

The study suggested that L/Zi isomers could improve 
mitochondrial function, reduce inflammation, and activate 
neuroprotective pathways post-TBI.

Researchers explored the effects of Hericium erinaceus 
and Coriolus versicolor in a mouse model of TBI. TBI was 
induced in mice using controlled cortical impact, resulting 
in decreased expression of tyrosine hydroxylase and 
dopamine transporter in the substantia nigra, accompanied 
by behavioral alterations. Daily oral treatment with H. 
erinaceus and C. versicolor restored behavioral deficits 
and prevented the decrease in tyrosine hydroxylase 
and dopamine transporter expression. Moreover, the 
vehicle groups showed increased neuroinflammation and 
oxidative stress, both of which were mitigated by the fungal 
treatments. This study suggested that TBI may trigger 
the potential neurodegenerative events associated with 
PD and that nutritional fungi such as H. erinaceus and C. 
versicolor could play a role in neuroprotection, attenuating 
neuroinflammation and oxidative stress processes.[21]

In a subsequent study, researchers investigated the 
neuroprotective effects of cinnamon polyphenol extract 
in a mouse model of TBI. Cinnamon polyphenol extract 
administration significantly reduced infarct and edema 
formation post-TBI. This reduction was associated with 
alterations in inflammatory and oxidative parameters, 
including NF-κB, IL 1-beta, IL 6, nuclear factor erythroid 
2-related factor 2, and antioxidant enzymes. These results 
suggested that cinnamon polyphenol extract exerted 
neuroprotective effects by suppressing inflammation and 
oxidative injury, thus holding potential as a therapeutic agent 
for TBI.[100]

Furthermore, the focus shifted to the potential therapeutic 
intervention of exogenous ketones and lactate for brain 
injury and neurodegenerative conditions. These preparations 
showed promise as therapeutic adjuncts for both acute and 
chronic neurological conditions, with the ability to modulate 
brain function and potentially mitigate neurodegenerative 
risks.[76] Likewise, researchers explored the effects of 
α-linolenic acid supplementation on neuroinflammation 
and functional recovery in a mouse model of TBI. Mice 
with reduced brain docosahexaenoic acid (DHA) levels 
exhibited increased expression of proinflammatory cytokines 
and slower functional recovery after TBI. Increasing 
brain DHA levels, even from moderately depleted states, 
reduced neuroinflammation and improved functional 
recovery, suggesting a potential role for dietary n-3 PUFA 
supplementation in improving outcomes after TBI.[23]

In a study using a mouse model of mTBI, the protective 
effects of n-3 PUFAs were examined. Fat-1 mice, which 
synthesize n-3 PUFA endogenously, showed significantly 
lower neurological severity scores and greater neurological 
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restoration compared to wild-type mice. These findings 
suggested the potential protective role of n-3 PUFA against 
mild brain injury.[56]

Finally, the neuroprotective potential of icariin, a component 
of Epimedii Herba, was investigated in a mouse model of 
TBI. Icariin treatment led to improved sensory-motor and 
cognitive function in various tests. This effect was associated 
with the upregulation of synaptic plasticity markers, 
suggesting a possible mechanism for icariin’s effects on 
functional recovery after TBI.[51]

Similarly, the effects of folinic acid were studied in a rat model 
of head injury. Folinic acid administration reduced serum 
levels of homocysteine, tumor necrosis factor (TNF)-α, 
IL-10, and HMGB1 gene expression, indicating potential 
anti-inflammatory properties. This study suggested that 
folinic acid might mitigate neuroinflammation associated 
with TBI.[95]

Exercise

Studies have shown a neuroprotective effect of exercise in 
conditions such as stroke, with benefits including promotion 
of angiogenesis, inhibition of inflammatory response, and 
protection of the BBB.[102]

Aerobic exercise post-TBI can reduce neuronal injury, as 
has been shown in animal studies, enhance neuroprotective 
trophic factors, and improve neuronal survival. Subsymptom 
threshold exercise has also been found to be safe and effective 
in decreasing symptom burden in individuals with mTBI. 
However, the timing of exercise initiation is important, as 
early exercise in the acute postinjury period might hinder 
recovery mechanisms. Although limited human clinical 
studies exist, aerobic exercise post-TBI is believed to engage 
cerebrovascular mechanisms and provide neurophysiologic 
benefits to mitigate post-TBI changes. In addition, exercise 
counteracts the negative effects of prolonged inactivity and 
physical deconditioning.[101]

Previous exercise training was shown to alter oxidative-
inflammatory status in the liver, protect against hepatic 
inflammation and oxidative stress, and improve 
mitochondrial function in a rat model of TBI. In the same 
model, exercise also had positive effects on cognitive 
signaling pathways and reduced levels of circulating and 
neuronal cytokines.[22]

Similarly, the neuroprotective effects of endurance exercise 
on neuroinflammation in a mouse model of PD were found 
to have neuroprotective effects against neuroinflammation 
in PD mice as exercise reduced α-synuclein protein levels, 
proinflammatory cytokines, and improved dopaminergic 
function.[49] Additional evidence supports that regular 
physical activity could have a positive impact on brain 

health after TBI, potentially aiding in posttraumatic 
rehabilitation.[9] Specifically, according to one study, early 
exercise initiated within 24 hours of injury could provide 
neuroprotection by reducing neuroinflammation, oxidative 
stress, and cell death. The findings suggested that exercise 
could play a role in mitigating the detrimental effects of 
TBI.[79] Exercise was also found to reduce neurological 
deficits, inhibit proinflammatory gene profiles, and enhance 
anti-inflammatory responses, possibly through the heat 
shock protein (HSP)70/NF-κB/IL-6/synapsin I pathway.[17] 
The anti-ferroptosis effects of moderate-intensity treadmill 
exercise after TBI were recently investigated, and exercise 
was found to rescue cognitive deficits and inhibit ferroptosis 
through suppression of the STING pathway.[16] In a rat 
model of mTBI, the effects of exercise rehabilitation and its 
interaction with the cerebral HSP20/BDNF/TrkB signaling 
axis were investigated, and it was found that exercise 
rehabilitation, along with increased expression of HSP20, 
BDNF, and TrkB, improved cognitive deficits and reduced 
brain contusion in the rat model. Injecting hsp20 small 
interfering RNA reversed the benefits of exercise, suggesting 
a role for HSP20 in exercise-mediated cognitive recovery.[18] 
Exercise was also found to elevate BDNF messenger RNA 
expression in specific hippocampal regions and was 
associated with increased neuroprotection.[41]

Furthermore, the relationship between physical activity, 
global health, and cognitive health was studied in individuals 
with a history of TBI. The study found that physical activity 
was associated with improved global and cognitive health 
perceptions, particularly in individuals with a history of 
TBI. The research highlighted the potential of physical 
activity programs to promote better health outcomes in TBI 
survivors.[72]

Subsequent research efforts explored the effects of 
voluntary wheel running on object recognition memory 
and neuroprotection after controlled cortical impact injury. 
Different exercise protocols were evaluated, and the results 
showed that exercise improved object recognition memory 
and reduced neurodegeneration.[3]

In the study titled “Characterizing Physical Activity and 
Sedentary Behavior in Adults with persistent postconcussive 
symptoms after mTBI,” researchers evaluated the physical 
activity and sedentary behavior of adults with persistent 
postconcussive symptoms after mTBI. Physical activity was 
decreased in individuals with persistent symptoms, and 
meeting physical activity guidelines was associated with 
better clinical outcomes and improved quality of life.[70]

Different research investigated the effects of posttraumatic 
exercise initiation on outcomes after moderate TBI using 
a mouse-controlled cortical impact model. The study 
compared late exercise initiation at five weeks posttrauma 
with early exercise initiation at one week. Late exercise 



Buccilli, et al.: Neuroprotection in TBI: Behavioral interventions

Surgical Neurology International • 2024 • 15(22)  |  8

significantly reduced memory impairment and lesion 
volume, along with attenuating classical inflammatory 
pathways, activating alternative inflammatory responses, and 
enhancing neurogenesis. In contrast, early exercise did not 
alter behavioral recovery or lesion size and even increased 
neurotoxic proinflammatory responses.[78]

On the other hand, in the study titled “Moderate Intensity 
Treadmill Exercise Increases Survival of Newborn 
Hippocampal Neurons and Improves Neurobehavioral 
Outcomes after TBI,” researchers used a mouse-controlled 
cortical impact model to assess the effects of treadmill 
exercise on functional outcome and hippocampal neural 
proliferation after brain injury. The study demonstrated 
that moderate-intensity treadmill exercise initiated after 
brain injury reduced anxiety-like behavior, improved 
spatial memory, and promoted hippocampal proliferation 
and newborn neuronal survival without altering 
pathophysiological measures such as lesion volume and axon 
degeneration.[52] However, premature postconcussive exercise 
might exacerbate postconcussive symptomatology and 
disrupt restorative processes. The timing of exercise after TBI 
and its influence on neuroplasticity and recovery are thus of 
interest in many studies.[36]

The role of voluntary physical exercise and citicoline 
after TBI in a rat model was that citicoline and exercise 
had separate neuroprotective effects, including improved 
memory deficits and increased neurogenesis. However, the 
effects of citicoline and exercise did not synergize and even 
interfered with each other in some measures.[47] Combined 
treatments of exercise and Yisaipu (a TNF inhibitor) were 
effective in reducing sensorimotor and gait dysfunctions, 
systemic inflammation, and lesion volume after TBI.[32] 
Not only does exercise seem to be beneficial after TBI, but 
it also seems to have a neuroprotective effect even before 
TBI, as a study demonstrated that exercise preconditioning 
improved sensorimotor and cognitive deficits post-TBI, 
along with increased expression of neuroprotective genes 
and proteins (vascular endothelial growth factor-A and 
epoetin) in the brain.[91] Exercise preconditioning was also 
reported to have improved cognitive and motor recovery 
while activating antiapoptotic pathways, thus reducing 
neuronal cell death.[104] Similarly, postinjury exercise on 
neurometabolic, transcriptional, and cognitive outcomes 
following a TBI in adolescent male and female mice, the 
study revealed that exercise had intensity- and sex-dependent 
impacts on cognitive recovery, mitochondrial function, and 
transcriptional outcome measures.[97]

Sleep

Melatonin, a sleep-regulating and neuroprotective agent, has 
been explored as a potential treatment for TBI-induced sleep 
dysfunction due to its anti-inflammatory properties and 

ability to modulate circadian rhythms. However, the lack of 
standardization in melatonin research has posed challenges in 
translating findings into effective treatments for TBI-related 
sleep issues.[7] Sleep deprivation, commonly experienced by 
military personnel, can exacerbate brain pathology, especially 
when coupled with concussive head injury (CHI).[33,86] In 
a randomized, double-blind, and placebo-controlled trial 
of melatonin treatment examining 62 pediatric patients 
with postconcussion symptoms, the study reveals increased 
functional connectivity in posterior default mode network 
regions and altered gray matter volume.[45]

Comparing healthy controls and individuals with mTBI, it 
was observed that control participants had higher physical 
activity and lower sleep time compared to the mTBI group.[61] 
Interestingly, the mTBI group exhibited similar changes in 
excitability and neurotransmitter concentrations over two 
months. However, no significant associations were found 
between physical activity, sleep quality, and physiological 
changes, challenging the direct impact of physical activity on 
physiological outcomes.[61]

Sleep deprivation after a TBI can have a neuroprotective role, 
leading to reduced morphological damage and enhanced 
recovery in rats. This counterintuitive finding suggests that 
wakefulness during the recovery process may promote 
neuroprotection.[66]

Neurorehabilitation strategies to promote 
neuroprotection and recovery

The combined intervention of manualized cognitive 
rehabilitation (compensatory cognitive training) and supported 
employment have been shown to significantly improve 
return-to-work (RTW) rates, reduce time to RTW, enhance 
work stability, and improve work productivity. In addition, 
improvements were observed in self-reported symptoms, 
emotional and cognitive function, and quality of life of patients 
with mild to moderate TBI and postconcussive symptoms.[42]

The effectiveness of executive functions (EF) training for 
adults with TBI within a virtual supermarket was examined. 
The study focused on using a virtual reality (VR) supermarket 
for EF training compared to conventional occupational 
therapy. Both groups showed improvements, but the VR 
group exhibited greater improvement in complex everyday 
activities. The study highlighted the potential of VR-based 
interventions for cognitive rehabilitation after TBI.[46]

On the other hand, a randomized controlled trial aimed to 
assess the efficacy of a 12-week health and wellness group 
intervention for individuals with moderate to severe TBI. 
The intervention’s impact on health-promoting lifestyle 
changes was evaluated. However, the study results indicated 
no significant differences between treatment and control 
groups in terms of health and wellness outcomes. Factors 
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such as individualized health goals and outcome measures 
might have influenced the intervention’s effectiveness.[10]

In a community-based healthy lifestyle intervention study, 
individuals with TBI were examined. The program focused 
on achieving weight loss through increased physical activity 
and improved dietary behaviors. Participants showed high 
adherence to the program, resulting in significant weight loss 
and improvements in physiologic outcomes. However, self-
reported health, quality of life, and step count did not show 
significant changes. The study highlighted the potential success 
of healthy lifestyle interventions for individuals with TBI.[26]

Plasma amino acid levels in severe TBI patients after 
rehabilitation, it was found that levels of plasma tyrosine 
and several essential amino acids remained lower than 
normal even after two months of rehabilitation. The study 
suggested that these amino acid abnormalities persisted 
despite the rehabilitation period.[4] An animal model study 
investigated the effects of combining multiple types of motor 
rehabilitation on functional outcomes following experimental 
TBI. The study found that combining different rehabilitative 
approaches led to enhanced behavioral outcomes compared 
to individual approaches. The study suggested that varied 
and intense rehabilitation strategies might be more effective 
in improving motor function after TBI.[1]

Finally, a case study explored the behavioral treatment 
of pulsatile tinnitus and headache after traumatic head 
injury. The evaluation included a polygraphic assessment 
of vasomotor and electromyographic function before and 
after treatment. Results showed that a combination of 
lifestyle modifications and specific behavioral interventions 
successfully improved self-report indices of functioning and 
the underlying physiology related to the disorder. The study 
highlighted the potential value of including polygraphic 
assessment in the treatment and evaluation of pulsatile 
tinnitus.[39] Furthermore, post hospital rehabilitation 
programs have been shown to achieve a significant reduction 
in disability, even for chronically-impaired patients.[58]

A multidisciplinary approach is also important in TBI 
management. The addition of a dedicated physiatrist specialized 
in brain injury medicine and functional outcomes following 
TBI was associated with improved functional outcomes on 
discharge from rehabilitation. Furthermore, the presence 
of a dedicated physiatrist led to changes in neuroprotective 
medication management in the acute care setting.[35]

CONCLUSION

This comprehensive review has delved into the 
multifaceted landscape of behavioral interventions in the 
management of TBI. The overarching aim was to elucidate 
the significance of these interventions and their impact on 
patient outcomes.

The literature explored herein underscores the paramount 
importance of behavioral interventions as a crucial 
component of TBI rehabilitation. TBI, with its diverse clinical 
manifestations and long-term consequences, necessitates 
a holistic approach to care. Behavioral interventions can 
yield substantial benefits across various domains. Cognitive 
rehabilitation programs have shown promise in ameliorating 
cognitive deficits, enhancing EF, and improving overall 
cognitive performance. Psychotherapeutic approaches, 
such as cognitive-behavioral therapy, have proven effective 
in addressing emotional and psychological sequelae, 
including depression, anxiety, and posttraumatic stress 
disorder. Furthermore, behavior modification strategies have 
contributed to the management of behavioral issues and the 
facilitation of adaptive behaviors.

It is noteworthy that the effectiveness of these interventions 
often depends on several factors, including the timing of 
intervention, patient characteristics, and the integration 
of multiple modalities. Individualized care tailored to the 
unique needs of each TBI patient is paramount.

However, as with any therapeutic approach, challenges 
persist. The heterogeneity of TBI presentations and 
the need for personalized interventions pose clinical 
complexities. In addition, logistical barriers, including 
access to specialized care and healthcare disparities, 
warrant attention. Despite these challenges, the potential 
for improving the lives of TBI patients through behavioral 
interventions remains substantial. This review underscores 
the need for continued research, innovation, and the 
development of standardized protocols to optimize the 
delivery of these interventions.
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