- Chief of Neurosurgical Spine and Education, Department of NeuroScience, Winthrop University Hospital, Mineola, NY 11501, USA
Correspondence Address:
Nancy E. Epstein
Chief of Neurosurgical Spine and Education, Department of NeuroScience, Winthrop University Hospital, Mineola, NY 11501, USA
DOI:10.4103/2152-7806.159380
Copyright: © 2015 Epstein NE. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.How to cite this article: Epstein NE. Preliminary study showing safety/efficacy of nanoss bioactive versus vitoss as bone graft expanders for lumbar noninstrumented fusions. Surg Neurol Int 25-Jun-2015;6:
How to cite this URL: Epstein NE. Preliminary study showing safety/efficacy of nanoss bioactive versus vitoss as bone graft expanders for lumbar noninstrumented fusions. Surg Neurol Int 25-Jun-2015;6:. Available from: http://surgicalneurologyint.com/surgicalint_articles/preliminary-study-showing-safetyefficacy-of-nanoss-bioactive-versus-vitoss-as-bone-graft-expanders-for-lumbar-noninstrumented-fusions/
Abstract
Background:The lateral fusion mass for multilevel lumbar laminectomies with noninstrumented posterolateral fusions now often utilizes lamina autograft and bone marrow aspirate (BMA) mixed with one of two bone graft expanders: either Vitoss (Orthovita, Malvern, PA, USA) or NanOss Bioactive (Regeneration Technologies Corporation: RTI, Alachua, FL, USA).
Methods:Here, we compared two sequential prospective the times to fusion, fusion rates, complications, and infection rates for two prospective cohorts of patients utilizing either Vitoss (first 213 patients) or NanOss (subsequent 45 patients) respectively, undergoing multilevel lumbar laminectomies (average 4.6 vs. 4.5 levels) with noninstrumented fusions (average 1.3 vs. 1.2 levels). Surgery addressed stenosis/ossification of the yellow ligament (OYL) (all patients), with subsets exhibiting degenerative spondylolisthesis synovial cysts, and disc disease. Fusion was documented by two independent neuroradiologists blinded to the study design, utilizing dynamic X-rays and two dimensional computed tomography (2D-CT) studies up to 6 months postoperatively, and up to 1 year where indicated.
Results:Comparison of patients receiving Vitoss versus NanOss as bone graft expanders revealed nearly comparable; times to fusion (5.3 months vs. 4.8 months), fusion rates (210 [98.6%] vs. 45 [100%] patients), pseudarthroses (3 [1.4%] vs. 0), postoperative seromas (2 [0.94%] vs. 0), and deep wound infections (2 [0.94%] vs. 0).
Conclusion:In this preliminary study of patients undergoing multilevel lumbar lamienctomies with posterolateral noninstrumented fusions, results were nearly comparable utilizing Vitoss or NanOss as bone graft expanders. Although the number of NanOss patients was substantially lower, the comparable efficacy and absence of postoperative complications for noninstrumented fusions is promising.
Keywords: Autograft, Beta-TriCalcium phosphate, noninstrumented lumbar fusion, NanOss Bioactive, pseudarthrosis rates, Vitoss
INTRODUCTION
Two successive prospective cohorts of patients underwent multilevel lumbar laminectomies with noninstrumented posterolateral lumbar fusions (PLF) utilizing lamina autograft and bone marrow aspirate (BMA) mixed with one of two bone graft expanders. The first 213 patients received Vitoss (Orthovita, Malvern, PA, USA), while the latter 45 patients received NanOss Bioactive (Regeneration Technologies Corporation (RTI: Alachua, FL, USA). We asked whether utilization of these two bone graft expanders would result in comparable times to fusion, rates of fusion versus pseudarthrosis, incidence of postoperative seromas, and infection.
METHODS
Vitoss
Vitoss, a form of Beta Tri-Calcium Phosphate (B-TCP), is a synthetic cancellous bone graft substitute/bone void filler that contains 39% calcium and 20% phosphorous, in a 1:5 ratio.[
NanOss Bioactive
NanOss’ nano-crystalline conformation (15–100 nm) is similar to normal human bone crystals (25–500 nm) both in composition and shape; alternatively, other calcium phosphate crystals are typically 1000–10,000 nm in size.[
Two prospective cohorts utilizing Vitoss (213 Patients) followed by NanOss (45 Patients) as bone graft expanders
The first cohort of 213 patients received Vitoss (2007–2011) while the subsequent cohort of 45 patients received NanOss (2012–2014) as bone graft expanders to supplement noninstrumented posterolateral fusions (average 1.3 vs. 1.2 levels) following multilevel lumbar laminectomies (average 4.6 vs. 4.5 levels) [
Posterolateral fusion mass utilizing vitoss and NanOss
Posterolateral fusion masses applied over decorticated transverse processes utilized lamina autograft (first layer), supplemented with Vitoss or NanOss (second layer). Both products come in a 10 × 2.5 cm sheets that are readily soaked in 10 cc of BMA. Each sheet may be cut in half or quarters for better handling. For a one-level fusion, each side receives half a strip applied dorsal to the lamina autograft, while two-level fusions in larger patients, may occasionally warrant a full strip on each side.
Dynamic X-rays and two dimensional computed tomography (CT) documentation of fusion
All patients underwent dynamic X-rays (3, 4.5, and 6 months postoperatively) and two dimensional CT (2D-CT) studies (at 3 months and repeated as needed) until fusion or pseudarthrosis was documented (e.g. up to 1 year postoperatively). Studies were independently analyzed by two neuroradiologists blinded to the study design.
RESULTS
Patients in both groups also exhibited comparable; times to fusion; 5.3 months vs. 4.8 months [Figures
Figure 1
A 73-year-old female underwent a multilevel L2-S1 lumbar laminectomy and noninstrumented L4-5 posterolateral fusion (for grade I degenerative spondylolisthesis) utilizing lamina autograft/BMA/Vitoss. The 6-month postoperative axial CT study demonstrated continuity of the fusion mass consistent with adequate arthrodesis
Figure 2
For the same patient from
Figure 3
A 75-year-old female underwent a multilevel L1-S1 laminectomy and noninstrumented L4-L5 posterolateral fusion (for grade I degenerative spondylolisthesis) utilizing lamina autograft/BMA/NanOss. The 6-month postoperative axial CT study demonstrated similar continuity of the fusion mass consistent with arthrodesis
Figure 4
For the same patient from
DISCUSSION
Prior studies documenting efficacy of Vitoss as a bone graft expander for fusion
Efficacy of Vitoss as a bone graft expander for instrumented posterolateral lumbar fusions
Epstein previously documented the efficacy of Vitoss as a bone graft supplement/expander in two instrumented PLF studies.[
Efficacy of Vitoss as a bone graft expander for noninstrumented posterolateral lumbar fusions (earlier study)
In a prior series from 2008, Epstein evaluated fusion rates for 60 patients undergoing average 5.4 level laminectomies with 1-2 level posterolateral noninstrumented fusions utilizing Vitoss/BMA/autograft.[
Efficacy of Local bone with Vitoss/B-TCP (bone graft extender) for posterior adolescent idiopathic scoliosis surgery
In a 2009 prospective randomized scoliosis pilot study (EBM-Level 1), Lerner et al. compared the clinical/radiographic results of utilizing Vitoss/B-TCP (20 patients) with local bone versus autogenous iliac crest bone graft (ICBG) (20 patients) for adolescent idiopathic scoliosis (AIS) surgery.[
Efficacy of bone morphogenetic protein (BMP/INFUSE) and calcium phosphate salts for posterolateral lumbar fusion
In 2014, Kaiser et al. proposed using local laminectomy autograft, calcium-phosphate salts, and bone morphogenetic proteins (BMPs) to perform lumbar interbody fusions, thus avoiding the morbidity of harvesting autologous ICBG (AICB).[
Comparison of NanOss with Vitoss and other products as bone graft expanders
NanOss, autograft, Vitoss, and Actifuse in a rabbit posterolateral fusion model
In 2009, Hill and Walsh (presentation North American Spine Society Meeting 2009) observed that NanOss has a high surface area for osteoblastic adhesions due to its unwinding of the triple helix structure, thus separating the strands to provide more sites for cell infiltration/attachments, and greater bone formation. Surface areas for the various compounds included; NanOss 70 m2/g, human bone 20–100 m2/g, Vitoss 0.3 m2/g, Actifuse 0.26 m2/g (Baxter Corporation Franklin Lakes, NJ, USA). Evaluating CT studies following L5-L6 PLF performed in rabbits at 8 and 12 postoperative weeks, they documented greater fusion for NanOss versus Actifuse versus Autograft, greater biomechanical strength/stiffness, and more histological ossification/fusion. In 2012, Walsh et al. (Orthopedic Research Society Meeting 2012) again confirmed greater fusion utilizing NanOss to performL5-L6 PLF in rabbits; at 6, 12, and 26 weeks greater fusion was observed for NanOss/BMA/autograft versus Vitoss BA/BMA versus autograft/BMA).
Nanocrystalline hydroxyapatite versus autologous BMA versus local bone in the lumbar spine: A retrospective CT analysis of PLF
In 2014, Robbins et al. performed a retrospective, multicenter 1-year review of postoperative CT studies in 46 patients (average age 58.6) undergoing 1–3 segment instrumented posterolateral fusions (PLF) utilizing NanOss/BMA/autograft.[
NanOss nanocrystalline hydroxyapatite most comparable to normal bone vs. Vitoss
In 2014, MacMillan et al. evaluated osteoblast and osteoclast activity for NanOss Bioactive (e.g. nanocrystalline hydroxyapatite [HA]; nanomaterials < 100 nm; porous low crystalline nano HA, B-TCP (RTI Surgical Corporation)) versus other micron crystalline ceramics (e.g. calcium phosphate products; HA, and biphasic calcium phosphates (TCP/HA), porous micron-TCP (Vitoss; Stryker, Corporation, Kalamazoo MI, USA) various types of nanoceramics).[
Comparable posterior cervical fusion rates utilizing Vitoss versus NanOss to supplement ICBG and BMA
In 2014, Epstein evaluated the efficacy of utilizing two bone graft expanders to achieve fusion in two separate sequential patient cohorts undergoing 1–3 level cervical laminectomy with posterior instrumented fusions (range 5–9 levels).[
CONCLUSION
Following multilevel lumbar laminectomies and 1-2 level posterolateral noninstrumented fusions, Vitoss (213 patients) and subsequently NanOss (45 patients) proved to be successful bone graft expanders, demonstrating nearly comparable fusion rates. Despite the smaller number of NanOss patients in this study, the comparable fusion efficacy and lack of significant postoperative complications make it a promising product to use in the future.
References
1. Epstein NE. A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech. 2006. 19: 424-9
2. Epstein NE. An analysis of noninstrumented posterolateral lumbar fusions performed in predominantly geriatric patients using lamina autograft and beta tricalcium phosphate. Spine J. 2008. 8: 882-7
3. Epstein NE. Beta tricalcium phosphate: Observation of use in 100 posterolateral lumbar instrumented fusions. Spine J. 2009. 9: 630-8
4. Epstein NE. Preliminary Documentation of the Comparable Efficacy of Vitoss vs. NanOss Bioactive as Bone Graft Expanders for Posterior Cervical Fusion. Surg Neurol Int Spine. p.
5. Kaiser MG, Groff MW, Watters WC, Ghogawala Z, Mummaneni PV, Dailey AT. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: Bone graft extenders and substitutes as an adjunct for lumbar fusion. J Neurosurg Spine. 2014. 21: 106-32
6. Lerner T, Bullmann V, Schulte TL, Schneider M, Liljenqvist U. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J. 2009. 18: 170-9
7. MacMillan AK, Lamberti FV, Moulton JN, Geilich BM, Webster TJ. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone. Int J Nanomedicine. 2014. 9: 5627-37
8. Robbins S, Lauryssen C, Songer MN. Use of Nanocrystalline Hydroxyapatite with Autologous BMA and Local Bone in the Lumbar Spine. A Retrospecrtive Ct Analysis of Posterolatearl Fusion Results. J Spinal Disord Tech. 2014. p.